Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2021

Table 1. Overview of the most relevant patents, found on Espacenet based on either the company name, the technology name or one of the inventors (founders). (*): This is a platform, not a company.

Title	Publication nr	Publication date	Associated company
Microfluidic method for single cell analysis	WO2019202135A1	2019-10-24	HiFiBiO Therapeutics
Method for analyzing and selecting a specific	WO2018134323A1	2018-07-26	HiFiBiO Therapeutics
droplet among a plurality of droplets and			
associated apparatus			
Particle sorting in a microfluidic system	WO2019057794A1	2019-03-28	HiFiBiO Therapeutics
Microfluidic droplet detection and sorting	WO2016174229A1	2016-11-03	Velabs Therapeutics
Methods for nano-scale single cell analysis	EP2805769A1	2014-11-26	Velabs Therapeutics
Droplet-based selection	WO2009011808A1	2009-01-22	Velabs Therapeutics
Microfluidic sorting device	WO2016151107A1	2016-09-29	Velabs Therapeutics
Microfluidic sorting devices and methods	WO2018054975A1	2018-03-29	Velabs Therapeutics
Microfluidic device	WO2013037962A3	2013-05-30	Velabs Therapeutics
Microfluidic devices and systems	WO2015015199A2	2015-02-05	Sphere Fluidics
Systems and methods	WO2016193758A1	2016-12-08	Sphere Fluidics
Microfluidic structures	WO2017046565A1	2017-03-23	Sphere Fluidics
Emulsion	WO2015015198A3	2015-06-11	Sphere Fluidics
Droplet dispensing systems	W02018234821A3	2020-04-22	Sphere Fluidics
Droplet sorting	WO2016024095A1	2016-02-18	Sphere Fluidics
Droplet processing methods and systems	WO2020030903A1	2020-02-13	Sphere Fluidics
Method of screening a plurality of single secreting	WO2013090404A2	2013-06-20	Single Cell Technology
cells for functional activity	<u> </u>	2013 00 20	Single cell reciliology
Method of screening single cells for the	WO2009123762A3	2009-12-30	Single Cell Technology
production of biologically active agents			omgre con recimency,
Method of obtaining antibodies of interest and	WO2009123748A1	2009-10-08	Single Cell Technology
nucleotides encoding same			omgre con recimency,
Methods for determining lymphocyte receptor	WO2015176162A1	2015-11-26	AbCellera
chain pairs			1 10 0 0 11 0 1
Microfluidic devices and methods for use thereof	WO2014153651A1	2014-10-02	AbCellera
in multicellular assays of secretion			
System and method for microfluidic cell culture	US2020325431A1	2020-10-15	AbCellera
Methods for assaying cellular binding interactions	US2012015347A1	2012-01-19	AbCellera
Microfluidic cell trap and assay apparatus for	WO2012162779A1	2012-12-06	AbCellera
high-throughput analysis			1 1 2 2 3 1 3 1 3 1
Microfluidic sieve valve	WO2006060748A2	2006-06-08	AbCellera
Methods and systems for screening using	WO2018111765A1	2018-06-21	xCella Biosciences Inc.
microcapillary arrays			
Lateral loading of microcapillary arrays	WO2020118106A1	2020-06-11	xCella Biosciences Inc.
Multi-stage sample recovery system	WO2018125832A1	2018-07-05	xCella Biosciences Inc.
High-throughput absorbance measurements of	WO2018191180A1	2018-10-18	xCella Biosciences Inc.
samples in microcapillary arrays			
Direct clone analysis and selection technology	WO2012007537A1	2012-01-19	DiCAST (*)
Microsieve diagnostic device in the isolation and	US2017189907A1	2017-07-06	VyCAP
analysis of single cells			,
Diagnostic device with a filtration membrane for	NL1039638C2	2013-12-04	VyCAP
on spot microscopic diagnostic analysis and			
methods			
A microsieve diagnostic device in the isolation	WO2013180567A3	2014-04-10	VyCAP
and analysis of single cells			
Micro well plate to distribute single cells in single	NL1040089C2	2014-09-15	VyCAP
, 0		1	· ·

wells, and methods to use such plate			
Light sequencing and patterns for	US2017354969A1	2017-12-14	Berkeley Lights
dielectrophoretic transport			, 3
Exporting a selected group of micro-objects from	WO2015061462A9	2015-07-23	Berkeley Lights
a micro-fluidic device			, 3
Systems for operating electrokinetic devices	WO2016094507A9	2016-08-11	Berkeley Lights
Automated identification of assay areas in a	WO2016094522A1	2016-06-16	Berkeley Lights
microfluidic device and detection of assay			
positive areas based on rate of change of image			
light intensity			
Automated detection and repositioning of micro-	WO2016094459A3	2016-08-18	Berkeley Lights
objects in microfluidic devices			, -
Circuit based optoelectronic tweezers	WO2014074367A1	2014-05-15	Berkeley Lights
Capturing specific nucleic acid materials from	WO2015095623A1	2015-06-25	Berkeley Lights
individual biological cells in a micro-fluidic device			, -
Methods for assaying binding affinity	WO2020056339A1	2020-03-19	Berkeley Lights
Detecting cells secreting a protein of interest	WO2014070783A1	2014-05-08	Berkeley Lights
Pens for biological micro-objects	WO2014070873A1	2014-05-08	Berkeley Lights
Microfluidic devices having isolation pens and	WO2015061497A1	2015-04-30	Berkeley Lights
methods of testing biological micro-objects with			, 0
same			
Actuated microfluidic structures for directed flow	WO2016094333A1	2016-06-16	Berkeley Lights
in a microfluidic device and methods of use			, ,
thereof			
Micro-Fluidic Devices for Assaying Biological	WO2015061506A8	2015-06-18	Berkeley Lights
Activity			, -
Movement and selection of micro-objects in a	WO2016094715A3	2016-08-04	Berkeley Lights
microfluidic apparatus			
General functional assay	WO2019133874A1	2019-07-04	Berkeley Lights
Outputting a droplet of liquid medium from a	WO2013181288A8	2015-01-15	Berkeley Lights
device for processing micro-objects in the			
medium			
Automated detection and characterization of	WO2019232473A3	2020-01-16	Berkeley Lights
micro-objects in microfluidic devices			
Microfluidic reporter cell assay methods and kits	US2021069698A1	2021-03-11	Berkeley Lights
thereof			
Methods, systems and kits for in-pen assays	WO2017181135A3	2019-01-03	Berkeley Lights
Automated detection and repositioning of micro-	WO2018102748A1	2018-06-07	Berkeley Lights
objects in microfluidic devices			
Methods for screening B cell lymphocytes	WO2018076024A8	2018-07-26	Berkeley Lights
Apparatuses, systems and methods for imaging	WO2018102747A1	2018-06-07	Berkeley Lights
micro-object			
Microfluidic devices and kits and methods for use	WO2017100347A1	2017-06-15	Berkeley Lights
thereof			
DNA barcode compositions and methods of in situ	WO2018064640A9	2018-05-31	Berkeley Lights
identification in a microfluidic device			
Single-sided light-actuated microfluidic device	WO2016090295A1	2016-06-09	Berkeley Lights
with integrated mesh ground			
Methods for assaying biological cells in a	WO2020092975A2	2020-05-07	Berkeley Lights
microfluidic device			