Electronic Supplementary Information

On-chip perivascular *niche* supporting stemness of patient-derived glioma cells in a serum-free, flowable culture

Magda Gerigk ^{a,b}, Harry Bulstrode ^c, HaoTian Harvey Shi ^{d,a}, Felix Tönisen ^{f,a}, Camilla Cerutti ^g, Gillian Morrison ^h, David Rowitch ⁱ, Yan Yan Shery Huang ^{a,b*}

^{a.} Department of Engineering, University of Cambridge, United Kingdom

^{b.} The Nanoscience Centre, University of Cambridge, United Kingdom

^c Department of Clinical Neuroscience, University of Cambridge, United Kingdom

^{d.} Department of Mechanical & Industrial Engineering, University of Toronto, Canada

e. Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboudumc, Netherlands

^{f.} Randall Centre of Cell & Molecular Biophysics, King's College London, London, United Kingdom

^{g.} Centre for Regenerative Medicine, University of Edinburgh, United Kingdom

h. Department of Paediatrics, University of Cambridge, United Kingdom

*Correspondence: yysh2@cam.ac.uk+

Table. S1: Table	summarizing selected	d microfluidic-based	models	developed	to	study	GBM	cells,	or	their
interactions with	interactions with vasculature. This table compares published GBM-on-a-chip models to the present work.									

	Ayuso et al., 2016 Scientific Reports	Xu et al, 2016 Scientific Reports	Ayuso et al., 2017 Neuro-oncology	Ma et al., 2018 Biomedical Microdevices	Truong et al., 2018 Biomaterials	Xiao et al., 2019 Advanced Science	Current Work
Main Research Topics	 Drug penetration Drug toxicity Glucose and oxygen profile 	Cancer cell–Blood- Brain Barrier (BBB) interactions Evaluation of therapeutic response in glioma brain tumour	Generating pseudopalisades Enhancing aggressiveness through blood vessel obstruction events	 Glioblastoma aggressiveness Drug evaluation 	Glioma stem cell- vascular interactions	Ex vivo dynamics of GBM cells Microvasculature-on- a-chip Examine function of primary patient- derived BTSCs	Stem cell niche-on-a- chip Physical and biochemical crosstalk between CSCs and brain microvessels
System Characteristics	Polystyrene with 2000μm wide central microchamber flanked by two 700 μm wide lateral microchambers with the chamber depth of 250 μm	PDMS device on glass wafer with an array of 16 functional units connected by micro- channels	Polystyrene device with perfusion of hermetic connections to the microdevice inlets and outlets	PDMS on PDMS-coated glass slide; device with concentration gradient generator channels	PDMS on glass slide with three concentric semicircles comprising of tri-layer tumour, stroma and vasculature regions	Chip (AIM biotech) adapted from prof. Roger Kamm Design	PDMS on glass slide device with gravity-drive perfusion
Cell Types	U251	U87, A549, MDA-MB- 231, M624 and BEL- 7402 cells	C6 or U251	U87	Patient-derived cell lines co-cultured with HUVECs	U87, patient-derived glioma stem-like cells and fresh patient-derived GBM cells; co-cultured with HUVECs	U87, patient-derived glioma cell line, normal brain cells; all co-cultured with hCMEC/D3, HUVECs, or HMVEC-L
ECMs	1.5 mg/ml collagen I	6 mg/mL collagen I	1.5 mg/ml collagen I	1.5 mg/ml collagen I	Matrigel	2.5 mg/ml fibrin	2 mg/ml collagen I with laminin

Fig. S1: Gravity-driven flow setup. a) design of the gravity-driven pump stage which allows two microfluidic devices and the pump reservoir to be connected easily and safely; b) flow rates obtained from four different hydraulic head heights in the microfluidic device. The graph represents data obtained from three independent experimental runs presented by mean±SEM;

Fig. S2: U87 cells can survive in both DMEM/10% FBS and EGM-2MV media whilst cultured in 3D collagen I-based hydrogels in u-slides. a) left side: example images of calcein AM/EthD-1 staining of U87 cells at 3 days in culture; right side: graph presenting viability of U87 cells. Data presented as mean±SD (percentage of live cells); b) mRNA expression normalised to 2D DMEM/10%FBS samples. Results obtained from three independent experimental runs are presented by mean±SEM. One-way ANOVA with Tukey's post-hoc test was used for significance

Fig. S3: U87 cells cultured in 3D collagen I-based ECM with serum-free medium express increased stemness-related genes compared to 2D culture. a) Representative image of calcein AM/EthD-1 staining of U87 cells at day-7 culture; b) Viability of U87 cells over seven days in 3D cell culture. Data presented as mean±SD (percentage of live cells). c) Ki67 EGRF and GFAP, and d) mRNA expression of U87 cells grown in 3D ECM versus 2D culture for three days (GAPDH was used as housekeeping gene). Results are from three independent experimental runs are presented by mean±SEM. One-way ANOVA with Tukey's post-hoc test was used for significance.

Fig. S4: Left: graph presenting viability of six different GSCs and one foetal neural stem cell line over seven days in cell culture; Right: Example images of calcein AM/EthD-1 staining of U87 cells at day 1 and day 7 in culture. At day seven in culture, cells migrated into the outermost side channels, and formed necrotic clusters in the centre of the chamber. The graph shows percentage viability values – data is presented as mean±SD, obtained from three independent experimental runs.

Fig. S5: a) mRNA expression normalised to HMVEC-L as sample of the lowest expression of all tested genes. Results obtained from three independent experimental runs are presented by mean±SEM. One-way ANOVA with Tukey's post-hoc test was used for significance; b) In monoculture of microvessels, endothelial cells of different tissue origin are characterised by similar levels of expression of neovascularisation-related genes. mRNA expression normalised to HMVEC-L microvessel. Results obtained from three independent experimental runs are presented by mean±SEM.

Fig. S6: Gene expression in endothelial cells changes under the influence of brain cancer cells in organ-specific manner. Graphs were plotted in RStudio after the analysis of mRNA expression normalised to endothelial monoculture. Results obtained from three independent experimental runs are presented by mean±SEM.

Table S2 a): qPCR primers sequences

gene	primer sequence 5'->3'
ANG1	forward (fw): GCCTACACTTTCATTCTTCCAGA
	reverse (rv): TCTTCCTTGTGTTTTCCTTCCAT
ANG2	fw: GGCAGCGTTGATTTTCAGAGGACT
	rv: TTTAATGCCGTTGAACTTATTTGT
CD31	fw: CCCAGCCCAGGATTTCTTAT
	rv: ACCGCAGGATCATTTGAGTT
CD44	fw: CCAGAAGGAACAGTGGTTTGGC
	rv: ACTGTCCTCTGGGCTTGGTGTT
CD133	fw: ATTGACTTCTTGGTGCTGTTGA
	rv: GATGGAGTTACGCAGGTTTCTC
claudin-5	fw: ACACTAATACGAAGGCACTCCA
	rv: CTCCTGGAAGATGGTGATGG
GAPDH	fw: GTCTCCTCTGACTTCAACAGCG
	rv: ACCACCCTGTTGCTGTAGCCCAA
GFAP	fw: GTACCAGGACCTGCTCAAT
	rv: CAACTATCCTGCTTCTGCTC
Ki67	fw: GAGAATCTGTGAATCTGGGTAA
	rv: CAGGCTTGCTGAGGGAAT
MMP2	fw: CCCCAAAACGGACAAAGAG
	rv: CACGAGCAAAGGCATCATCC
MMP9	fw: CACTGTCCACCCCTCAGAGC
	rv: GCCACTTGTCGGCGATAAGG
nestin	fw: CAGCGTTGGAACAGAGGTTGG
	rv: TGGCACAGGTGTCTCAAGGGTAG
occludin fw: TCAGGGAATATCCTCACTTCAG	
	rv: CATCAGCAGCAGCCATGTACTCTTCAC
olig2	fw: ATGCACGACCTCAACATCGCCA
	rv: ACCAGTCGCTTCATCTCCTCCA
sox2	fw: ATGCACCGCTACGACGTGA
	rv: CTTTTGCACCCCTCCCATTT

TIE2	fw: TACTAATGAAGAAATGACCCTGG
	rv: GGAGTGTGTAATGTTGGAAATCT
VE-cad	fw: AAGACCGATTAACCATGTCA
	rv: ATGTCAGGCTTTCTGGATTA
VEGFR1	fw: CAGGCCCAGTTTCTGCCATT
	rv: TTCCAGCTCAGCGTGGTCGTA
VEGFR2	fw: CCAGCAAAAGCAGGGAGTCTGT
	rv: TGTCTGTGTCATCGGAGTGATATCC
ZO-1	fw: ATTCCTTAGTGTCCAA
	rv: CCTGAGCAGTATCTT
	1

Antigen	Host	Dilution IF	Dilution WB	Supplier
CD31	mouse	1:200	1:1000	Invitrogen
CD44	rabbit	1:500	1:2000	abcam
CD133	rabbit	1:200	1:500	abcam
GAPDH	goat	-	1:1000	abcam
GFAP	mouse	-	1:1000	Sigma
Ki67	rabbit	-	1:500	abcam
nestin	mouse	1:500	1:1000	Millipore
olig2	mouse	1:500	1:1000	Invitrogen
sox2	mouse	1:200	1:500	R&D Systems
VE-cad	mouse	1:200	1:100	Novus Biologicals
ZO-1	rabbit	1:500	1:1000	abcam

Table S2: b): Primary antibodies.

Table S2 c): Secondary antibodies and fluorescent probes

	Secondary Antibodies						
-	Antigen	Host	Conjugation	Dilution	Supplier		
	goat IgG	donkey	HRP	1:5000	R&D Systems		
	mouse IgG	sheep	HRP	1:5000	R&D Systems		
	rabbit IgG	donkey	HRP	1:5000	GE Healthcare		
	mouse IgG	donkey	Alexa Fluor® 488	1:1000	abcam		
	rabbit IgG	goat	Alexa Fluor® 488	1:1000	abcam		
	mouse IgG	goat	Alexa Fluor® 647	1:1000	abcam		
	rabbit IgG	donkey	Alexa Fluor® 647	1:1000	abcam		

Fluorescent probes

Names	Dilution	Supplier
Alexa Fluor 488® phalloidin	1:5000	Invitrogen
CyTRAK Orange™	1:1000	abcam

Table S3: Endothelial permeability measurements for cells in both serum-containing medium and serum-free medium 12 and 24 hours after seeding;

Serum-containing Medium							
cell type 12 hr 24 hr							
hCMEC/D3	10.5±1.4	8.2±0.9					
HUVECs	15.0±3.6	12.0±2.4	x10 ⁻³ cm/min				
HMVEC-L	14.8±2.9	11.7 ± 2.6					

Serum-free Medium

cell type	12 hr	24 hr	
hCMEC/D3	11.2±0.8	8.7±1.1	
HUVECs	15.4±2.9	12.8±3.2	x10 ⁻³ cm/min
HMVEC-L	15.0±3.5	12.4±2.4	