Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

An Innovative Data Processing Method for Studying Nanoparticle Formation in Droplet Microfluidics using X-rays Scattering

Dimitri Radajewski, Liam Hunter, Xuefeng He, Ouassef Nahi, Johanna M. Galloway and Fiona C. Meldrum

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK

Figure S1. Higher magnification for TEM observation of the nanoparticles obtained from bulk synthesis and long time-scale microfluidics synthesis.

Figure S2. Size analysis of the nanoparticles formed with both bulk and long-time scale microfluidics experiments done by measuring the length and width of all of the particles with visible discernible edges from a number of images. Measurements of n = 83 particles for the late droplet (130 sec) and n = 96 particles for the particles from bulk precipitation were collected using ImageJ-win64 (Fiji). The average of the length and width for the particles was calculated, with particles from the late droplet (130 sec) having a smaller size and narrower distribution (size = 5.5 ± 1.2 nm) than those formed from a bulk solution (size = 8.5 ± 1.6 nm). These data were also fitted with Gaussian distributions and plotted as box-and-whisker diagrams in Origin 2018 64 bit as they show a normal distribution about the mean.