Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2021

SUPPLEMENTARY INFORMATION

1

2	One-shot high-resolution melting curve analysis for KRAS point-mutation
3	discrimination on a digital microfluidics platform
4	
5	
6	
7	
8	
9	Mingzhong Li, ^a Liang Wan, ^{ab} Man-Kay Law, ^{*ab} Li Meng, ^{ab} Yanwei Jia, ^{*ab} Pui-In Mak, ^{ab} and Rui P. Martins ^{abc}
10	
11	
12	
13	
14	
15	^a State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macao, China
16	^b Faculty of Science and Technology – Electrical and Computer Engineering, University of Macau,
17	Macao, China.
18	^c On leave from Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
19	
19	
20	
21	To whom correspondence should be addressed:
22	*Email: <u>mklaw@umac.mo</u> , <u>yanweijia@umac.mo</u> .
23	Tel.: 00853-8822 8791.

1 S. Supplementary Information

2 S1. Fabrication and Assembly Process of the DMF Device

The fabrication and assembly of the DMF devices are conducted inside the clean-room facilities. The 3 electrodes in 2.5×2.5 mm² on the top plate are designed using AutoCAD (Autodesk, Inc) with 60-µm 4 clearance from each other. A 2.5-inch ITO glass is patterned with the electrodes with a standard laser-5 6 etching method, as shown in Figure S1(T.a). A 50-µm thick polyimide adhesive tape (3M, USA) is deposited as the mask layer on the ITO substrate. As illustrated in Figure S1(T.b), this aims to prevent 7 the secured area from being exposed to the insulator material. A 5-µm thick NOA68 (Norland Products, 8 USA) photoresist is spin coated onto the surface, as depicted in Figure S1(T.c). After that, Figure 9 S1(T.d) shows that the polyimide adhesive tape is removed, and the deposited dielectric layer is ready 10 for curing by UV exposure. The thickness of the dielectric layer is confirmed with a profilometer (D-11 600, KLA-Tencor). As shown in Figure S1(T.e), an amorphous fluoropolymer hydrophobic layer with 12 100-nm thickness is deposited on the actuation plate by spin coating the 0.5% Teflon® AF (1601S, 13 Dupont) in perfluorosilane (FC-40, 3M), followed by 180°C baking on a hot plate for 10 minutes. A 14 2.5-inch Titanium (Ti) plate with thickness of 1.1 mm and purity of 99.5% is heated at 400 °C in a 15 muffle furnace for 1 hour. This directly transforms the Ti surface into a thin-layer Titania (TiO₂), as 16 shown in Figure S1(B.a). Afterwards, the transformed substrate is immersed in a 10-M NaOH solution. 17 Hydrothermal etching is performed at 110 °C in a hydrothermal reactor for different durations (1, 3, 5, 18 7, and 9 hours) to construct an optimal porous surface with hierarchical micro/nano structure for super 19 hydrophobicity, as shown in Figure S1(B.b). The crystal form of the roughened TiO₂ surface is then 20 fully transformed into anatase by annealing treatment at 500 °C in a muffle furnace for 1 hour. This 21

Figure S1. Fabrication and assembly of the DMF device. The actuation plate is fabricated layer-by-layer in
sequence (T.a-T.e), while the functional plate is prepared on the surface of titanium substrate (B.a-B.e). The
assembled DMF device with spacer, actuation and functional plates is illustrated in (I).

5 renders the surface a structural basis in achieving high-level of oxidation. As shown in Figure S1(B.c),

SUPPLEMENTARY INFORMATION

1	the substrate is further modified with a superhydrophobic monolayer of Trichloro(1H,1H,2H,2H-
2	perfluorooctyl)silane by chemical vapor deposition (CVD) at 200 °C in an oven for 30 minutes. After
3	cooling to room temperature, the substrate can be observed superhydrophobic with a contact angle of >
4	170° and a sliding angle of < 1°. Taking advantage of the high-level oxidation, the anatase TiO_2
5	decomposes the superhydrpphobic monolayer by irradiation of the collimated near-ultraviolet light
6	(NUV, 365-436 nm) for 30 minutes. As shown in Figure S1(B.d, B.e), super-hydrophilic patterns are
7	selectively formulated within the super-hydrophobic substrate. A 300-µm thick glass is used as the
8	device spacer to confine the gap height between the actuation and functional plates with the
9	(super)hydrophobic layers facing each other. NOA68 photoresist also plays an adhesive to assemble
10	the whole device as shown in Figure S1(I). Surface treatment using oxygen plasma (Harrick Plasma)
11	is performed prior to the coating of each individual layer.

For those as-prepared substrates using the same fabrication procedures and being preserved for over 6 months, the changes of the contact angles in air and in hexadecane are illustrated in Table S1. As observed, the contact angles are consistent, and the lifetime of the super-wettability (hydrophobic/hydrophilic) patterns should be at least 6 months.

	Contact Angles in Air		Contact Angles in Hexadecane	
	Hydrophobic	Hydrophilic	Hydrophobic	Hydrophilic
Newly prepared	173°±2.2°	2.32°±0.33°	113°±0.51°	1.5°±0.31°
Over 6 months	164°±2.8°	2.61°±0.29°	105°±0.43°	2.1°±0.52°

16 **Table S1.** Variations of contact angles are measured in air/Hexadecane for over 6 months.

17 S2. DMF Electronics

18 The real-time controller of the electronic interface is implemented in Verilog on a DE0-Nano board

2 **Figure S2.** Hardware implementation for the DMF device control.

1

(Altera Cyclone® IV EP4CE22F17C6N). The field programmable gate array (FPGA) communicates
with the host computer through Bluetooth modules, and manipulates all the hardware by GPIO ports,
I²C, SPI and RS232. The implementations of the DMF electronics for DMF device interface are
detailed in Figure S2, including the functional hardware modules and corresponding controllers

1 embedded in the FPGA.

All the functional modules controllers operate in parallel, with each designed for a specific task. The command receiver acquires the data packaged from the RS232 port and distributes the decoded command to the corresponding functional modules, including the temperature sensing block, highvoltage signal generator, peltier and electrode switch array. The data collected from the functional modules are also encoded, buffered, and transmitted to the host PC through the feedback manager.

For the functional modules, the *Electrode Switch Array Controller* operates the IO extenders 7 (MCP23S17-T) through an I²C interface to manage the multi-channel electrode switching Activities. 8 The HV Signal Generator Controller operates the digital potentiometers through SPI interfaces to 9 adjust the output waveform of the high-voltage actuation signal, such as voltage amplitude, and 10 frequency. The Temperature Sensing Controller operates the analog-to-digital converter 11 (ADC128S022) on the DE0-nano board to digitize the temperature-dependent voltage signal. In the 12 Peltier Controller, pulse width modulation (PWM) is implemented to control the CMOS switching 13 activities for regulating the Peltier temperature. Both the temperature sensing block and Peltier serve 14 to regulate the melting temperature within the device chamber. 15

16 S3. Software Program

As shown in Figure S3, the customized software (written in C# and compiled in Microsoft® Visual Studio®) serves as the on-line DMF chip control. The control program is composed of four user interfaces (UI), including the wireless connection UI, electrode actuation UI, hardware configuration UI, and the temperature sensing and control UI as depicted in Figure S3. Detail implementation and functions of these interfaces are discussed in the following sections.

1 S3.1. Wireless Connection UI

This interface defines the wireless Bluetooth connection between the host computer and the electronic
hardware. The serial communication port (COM) reports the real-time connection status and adjusts
the corresponding baud rate as demanded.

5 S3.2. Electrode Actuation UI

Each individual electrode on the DMF chip can be actuated/grounded simultaneously. This could be
achieved by either selecting the corresponding UI buttons of specific electrodes or exerting a
customized command sequence.

9 S3.3. Hardware Configuration UI

Parameters settings for the DMF control electronics or FPGA are controlled by the software, including
the ADC sampling rate for the temperature sensing module and digital potentiometers for the HV signal
generator.

13 S3.4. Temperature Sensing and Control UI

A close-loop feedback controller is implemented to regulate the DMF operating temperature. The digitized temperature signal from the ADC is sent to host computer for further temperature mapping according to the hardware configurations. Based on the difference between the target and detected ambient temperatures, PWM coefficients are calculated by a proportion-integral-derivative (PID) algorithm and transmitted to the PWM module on the FPGA to regulate the distributed power into the heating membrane. The PWM duty cycle (*DC*) can be calculated using (1) to (4).

20
$$DC[n] = DC[n-1] + K_p * E[n] + K_d * DE[n] + K_i * IE[n]$$
(1)

$$E[n] = T_{target} - T[n]$$
⁽²⁾

$$2 DE[n] = T[n-1] - T[n]$$

$$IE[n] = T_{target} * m - \sum_{i=n-m}^{n} T[n]$$
(4)

where *n* denotes the index of data, T_{target} is the target temperature, T[n] is the n^{th} detected temperature, *m* is a constant coefficient (set as 15 in our experiment) representing the integration length, and K_p, K_d, K_i are the coefficients for the proportional term (E[n]), integral term (IE[n]), and derivative term (DE[n]), respectively.

(3)

V. UNDAF			l	l	l		ł	×
A MainWindows & TemperatureControl C DevTest D DevRet F Flaorescence P Product V Visua/Feedback								
VWF_CommMonitor	WI_SHQLmH3 SeqCmd1 SeqCmd2 SeqCmd3 SeqCmd4 SeqCmd5 SeqCmd6 SeqCmd7 SeqCmd8 4 X	WE_LEmperate Process Level Collection	Theorem I D					e x
Rot Name Buckste OperCom	cha thv 9hv 500. // high voltage actuation	AD Original Temp = p1TRes ² + p2TRes + p3	Votage Div O	aner H	tCoef0"SOC FLCc	ef60~70C AD Cal	Abr Beta	E.
V001 • 11000 • []		O researc	10000 0	0 0	0	0 0	0 0	
The Ener Sourd SC1 with his These Stants Transform Nexts Developed and Constraints of Constrain	and the electrodes at	Temperature A07991		0			0	
00 Erecté And Send	Sow Fawrole	33	Channel 1 Votage Div C	Liment	RCoef0-90C RC	out50~70C ND Ca	Nbr Beta	S.
	smaller chg 4hv 6hv 500; // for each one.	Circut Type	0		0	0	0	
	loop 10 // ten loops for the actuation	© votage Liv © Current © Current Anno		0.0		0	0 0	
Wireless Connection III	chg 5hv 5000 // of binding chamber (5000ms).	Themselor Second Order Cal	Charriel 2					
	Readus Time: end loop // end of the loop	20rder Terpendur Deta Cal Deta Cal Deta Cal Deta Cal Deta Cal Deta Cal	Votage Div 0	Jument	FeCoef0~90C Rec	oef60~70C AD CA	altor Bet	Cal
		© LSP16673 Channel 1 - Calcrate				0	0 0	
	P5	PFT102 Crey sergersular needed, for an 4 channes Fast Calibrate	Owened 3					
WT_TempMonitor	WF Board # ×	Beta Cal	Votage Div (Linert	RCoef0~90C RC	outer-70C AD C	Salter Beet	C.
Oversion Oversion Oversion Oversion Oversion Oversion Provide (%) Rec2 State Kentamog Open Title III O 2 IIII O 2 IIIII O 4 Down Sample Rate 1 Down Tample Y Rec2	Dres 1 Dres 2 Dres 5 Dres 5 Dres 9 Dres 10 Dres 3 Dres 4 Dres 7 Dres 5 Dres 10 Dres 10	33	0		0	0 0		
Title		Apply Compute Beta					X	
Target Ta	Dne_13 Dne_14 Dne_17 Dne_18 Dne_21 Dne_22 Dne_15 Dne_16 Dne_19 Dne_23 Dne_24	WF_TempStatics Q X WF_ParaSet	ala	Q X WF_PCR	rempCtriTest	a X Cun	rAmpPata	¢ ¢
Temperature Sensing		Num or samples (c. 1304) ou ur roose Mean Value AO Set	æ	have 4 d	erature control scheme, Elevent algorithms	00 C	00102825 am	
Y Aris	Electrode Actuation UI	Salvar Mean?: Dotal Yalee Handwa					Joseph Concerned	
		Votage(V) PGA		Agort	m			
	Chappe Time / M 2 SmpleMode Bec24 •	Vitihin Mean + Sid V Data Rate	•	1 0 10 1	- 6			
500 00 02 04 06 10 12 Xaie		Within Mean + 2°3d V Room Temperature		002	zy PID Inc zy PID Del			

Figure S3. Software program for on-line DMF device control.

1 S4. System Configuration

Figure S4 illustrates the experimental configurations. The DMF device is placed on the customized device holder and connected with the DMF electronics. All the electronics are supplied by a standard power bank. The host computer controls all the DMF electronics using the customized software. The experiments are recorded by the fluorescence microscope and the thermal imager.

6

7 Figure S4. Experimental system configurations with (a) fluorescence microscope, and (b) thermal imager.

8 S5. Effect of Wettability Contrast on MCA

9 The surface wettability of the substrate is programmable by regulating the UV photocatalysis 10 time. Even though different wettability contrasts (Δ CA) that are capable of patterning high-11 resolution droplets can be considered as potential solutions for MCA, the supreme wettability 12 contrast is selected as the optimal scheme in this work. A smaller Δ CA undermines the 13 uniformity of the droplet array, which can affect the MCA accuracy. Figure S5(a, b, e, f) 14 illustrate the T_m of 58.77±0.08 °C for K2 with Δ CA=170°, while the T_m with Δ CA=138° is 15 58.79±0.46 °C, as shown in Figure S5(c, d, g, h).

Figure S5. Experimental results illustrating the melting curves and melting peaks with the ΔCA of 170° and 138°,
respectively.

4 S6. Effect of Surface Adsorption

1

To avoid surface adsorption, we have involved additive reagent in the sample solutions to inhibit the 5 DNA adsorption effect on MCA. We select a mutant-type KRAS gene target (K2) as an example to 6 demonstrate the adsorption effect. A 5-µL mother droplet containing 10-µM K2 is swept across the 7 droplet array for multiple seeding cycles between the inlet and outlet. We retain the mother droplet on 8 each electrode for a fixed time of 5 seconds for observing the surface adsorption effect. Figure S6 9 shows the corresponding experimental results. As BSA and Tween-20 reduce the surface adsorption 10 and DNA loss, the obtained melting temperatures from 1, 5, and 10 seeding cycles fluctuate with minor 11 differences, with T_m reported as 58.44 °C, 58.78 °C, and 58.49 °C, respectively. This indicates that the 12 surface adsorption presents negligible effect on the MCA results. 13

Figure S6. Experimental results illustrate the MCA tests for mutant-type KRAS gene target (K2) with different
seeding cycles for the investigation of surface adsorption. (a, b, c) the on-chip melting curves, and (d, e, f) the
melting peaks show that that the T_m values of K2 are 58.44 °C, 58.78 °C, and 58.49 °C from 1, 5, and 10 seeding
cycles, respectively.

6 S7. Effect of Fluid Convection

Due to the temperature gradient, fluid convection in the background oil should be theoretically 7 established along the MCA chamber. However, this phenomenon cannot be directly observed due to 8 the transparent and uniform oil phase. In fact, the degree of convection can be reflected and 9 characterized from the movement velocity of the mother droplet. Figure S7(a) illustrates the droplet 10 velocity across 18 electrodes (E1-E18) on the top plate and 101 super-hydrophilic patterns on the 11 functional bottom plate with an actuation voltage fixed at 200 V_{rms} (500 Hz). The velocity is defined 12 as W_E/t , where W_E is the electrode width, and t is motion time for a droplet to move across two 13 14 adjacent electrodes.

We can experimentally observe a varying degree of resistance against the mother droplet movement 1 before and after the thermal equilibrium is established. This effect is more severe when the mother 2 droplet crosses the hot zone where a significant degradation in the droplet velocity is observed, as 3 shown in Figure S7(b). On the contrary, upon thermal equilibrium, the droplet motion velocity is 4 almost constant along the whole temperature gradient. This indicates that the establishment of the 5 6 thermal equilibrium can reduce the convection effect of the background oil.

Figure S7. Motion velocity of mother droplet actuated from cool zone to hot zone. 8

7

9

S8. Effect of DNA concentrations and dispensing temperature

The impact of DNA concentrations and dispensing temperature is also studied concerning the melting 10 temperatures. Figure S8 to S10 illustrate the melting curves and melting peaks of K2 samples with 11 various DNA concentrations ranging from 3 µM, 5 µM, and 10 µM. And Figure S11 illustrates the 12 melting curves and their derivatives of 10-µM K2 and K1 as dispensed at room temperature. 13

2 Figure S8. The melting curves and their derivatives of $3-\mu$ M K2 are investigated with T_m of 56.32 ± 0.14 °C.

4

5 Figure S9. The melting curves and their derivatives of 5- μ M K2 are investigated with T_m of 57.655 ±

1

2 Figure S10. The melting curves and their derivatives of $10 - \mu M K2$ are investigated with T_m of 58.77 ± 0.08 °C.

Figure S11. The melting curves and their derivatives of 10-μM K2 and K1 are investigated with T_m of
58.47±0.03 °C and 70.42±0.19 °C. Noted that the microarray is dispensed in the presence of room
temperature.

1 S9. Off-chip and on-chip melting curve analysis

For an on-chip melting curve analysis, a 5-µL DNA mix solution is loaded and actuated in hexadecane 2 oil phase across the substrate, which allows for the isolation of nL-scale samples on the super-3 hydrophilic patterns. The remaining sample is collected and recycled via the chamber outlet. With an 4 established thermal gradient from 40 °C to 90 °C, the melting curves are obtained from the 5 fluorescence microscope by single exposure for the analysis of melting peaks and melting temperatures. 6 7 The on-chip measurements for each MCA test are repeated for three times from different microchips. 8 In an off-chip MCA, a total volume of 10-µL the same master mix solution with the on-chip MCA is prepared and evaluated in Bio-Rad CFX96TM Real-Time PCR Detection System (Bio-Rad, USA). The 9 samples are incubated at 95 °C for 2 minutes and 25 °C for 5 minutes, followed by a thermal scanning 10 from 40 °C to 90 °C with an interval of 1 °C for 30 seconds. The off-chip MCA tests are also repeated 11 for three time from different tubes. The off-chip melting curves and derivative plots in Figure (S12-12 S15) indicate that the melting temperatures of the wild-type and mutant-type KRAS gene targets are 13 T_{m, K1-GGT} = 71.0 °C, T_{m, K2-GAT} = 59.0 °C, T_{m, K3-GCT} = 58.0 °C, and T_{m, K4-GTT} = 58.0 °C, respectively. 14 And the on-chip melting temperatures of the KRAS gene targets are $T_{m, K1-GGT} = 69.79 \pm 0.22$ °C, $T_{m, K2-GGT} = 69.79 \pm 0.22$ °C, $T_{m, K2-GT} = 69.79 \pm 0.22$ 15 _{GAT} = 58.76±0.08 °C, T_{m, K3-GCT} = 57.81±0.06 °C, and T_{m, K4-GTT} = 58.23±0.08 °C, respectively. Notice 16 that this work only obtains discrete points for the fluorescence-temperature curve. The errors in the 17 melting temperature T_m can occur if the curve fitting result is used. In this work, we mainly employ 18 the fitted curve to figure out the temperature $(T_{m.fit})$ with the largest slope point of the fitted melting 19 20 curve. We then identify the T_m as the temperature of the adjacent raw data point nearest to $T_{m.fit}$.

1

Figure S12. Experimental results illustrate the MCA tests for wild-type KRAS gene target (K1). (a, c, e) the offchip melting curves, and (g, i, k) the on-chip melting curves. (b, d, f) and (h, j, l) demonstrate the off-chip and onchip melting peaks, respectively.

Figure S13. Experimental results illustrate the MCA tests for mutant-type KRAS gene target (K2). (a, c, e) the
off-chip melting curves, and (g, i, k) the on-chip melting curves. (b, d, f) and (h, j, l) demonstrate the off-chip and
on-chip melting peaks, respectively.

1

Figure S14. Experimental results illustrate the MCA tests for mutant-type KRAS gene target (K3). (a, c, e) the
off-chip melting curves, and (g, i, k) the on-chip melting curves. (b, d, f) and (h, j, l) demonstrate the off-chip and
on-chip melting peaks, respectively.

1

Figure S15. Experimental results illustrate the MCA tests for mutant-type KRAS gene target (K4). (a, c, e) the
off-chip melting curves, and (g, i, k) the on-chip melting curves. (b, d, f) and (h, j, l) demonstrate the off-chip and
on-chip melting peaks, respectively.