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Supplementary information 1: Geometrical details of the microfluidic flow focusing

structures
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Figure S1. The geometry of the microfluidic flow focusing systems used for the generation

of harmonic flow patterns when applying axial motion to the inlet tube: (a) Two-inlet system,

(b) Three-inlet system. (c) Droplet generation system.



Supplementary information 2: Experimental setup
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Figure S2. Photo of experimental setup



Supplementary information 3: Generation, amplification, and combination of audio signals
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Figure S3. The procedure for generating an audio signal in software: (a) Generating the tone
at the desired frequency, followed by exporting the tone to a digital .wav file in monoaural
sound. This sound file is then amplified to the desired peak voltage and used to drive the
speaker that is coupled to the microfluidic inlet tube. (b-c) Generation of two-tone and three-

tone signals with desired frequency ratios.



Supplementary information 4: The audio spectrum of the simple piano melody

Synthesized “steinway piano” notes (Garageband v10.4.3, Apple)
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Figure S4. The audio spectrum of the simple melody, extracted from Adobe Audition
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Supplementary information 5: Speaker cone displacement at various frequencies and

voltages
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Figure S5. Characterisation of speaker cone displacement: (a) Experimental setup,

(b) Variations of the speaker cone linear motion with respect to the oscillation frequency at

various input voltages. Error bars correspond to average + standard deviation obtained in three

to five independent experiments.



Supplementary information 6: Numerical simulations showing the dynamic variations of

the velocity profile and flow rate caused by tube axial oscillation
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Figure S6. Numerical simulations revealing the dynamic variations of flow velocity contours
and flow rate through the axially oscillating tube: (a) Experimental setup, indicating the
dynamic (oscillating) and static segments of the inlet tube, (b) Dynamic variations of the core
and sheath flow rates through the microfluidic system, (c) Variation of velocity contour and

profile at the dynamic (oscillating) and static segments of the oscillating inlet tube.
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Supplementary information 7: Generation of customised numbers of rib patterns by
modulating the frequency ratio of two-tone signals
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Figure S7. Customised numbers of distinct rib patterns can be generated by modulating the
frequency ratio of two-tone signals: (a) 40 Hz + 20 Hz, § = 0.5, (b) 40 Hz + 30 Hz, 8 = 0.75,
(c) 40 Hz + 33.33 Hz, § = 0.8333, (d) 40 Hz, § = 1.0, (e) Variations of pulses within each

signal envelop against frequency ratio (8 = f,/f1).



Supplementary information 8: Calculation of the Reynolds number of oscillating flows

U.ore 1S the equivalent velocity of the core flow induced by tube oscillation was obtained by
balancing the dynamic pressure caused by tube oscillation with the viscous pressure drop along

the tube and the corresponding microfluidic channel:

APoscillation = APviscous—tube + APviscous—channel (1)

The dynamic pressure caused by tube oscillation is defined as: Accordingly, the viscous

pressure drop along the tube and channel are defined as:

APoscillation =0.5 Pcore (Atube CUtube)z (2)
APviscous—tube =128 Ucore Qcore Ltube/n’D;}ube (3)
APviscous—chamnel = A Ucore Qcore Lch/Wchth (4)
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equivalent dynamic Atupe - Amplitude of tube oscillation
flow rate of
oscillating core flow

Weype - Angular frequency of tube oscillation

: Density of the core flow
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Step 4: Calculate the
Reynolds number of
the oscillating core
flow

pcore Ucore Dtube (8)

Reoscillatiny =
core

Re,scitiating * Equivalent Reynolds number of oscillating
flow

P‘core
- 9)
Step 5: Calculate the Hsheatn
cgre t‘? sheat.h flow Enearn - Viscosity of the sheath flow
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¢ : Viscosity ratio of core the sheath flow
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equivalent Reynolds
number in the
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viscosity contrast

Re;scillating : Modified Reynolds number of oscillating
flow in the presence of viscosity contrast




Supplementary information 9: Calculation of A;,;, and w;,;. for two-tone signals
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Figure S8. Calculation of A;,,. and w;,,p. for two-tone signals shown for various frequency
ratios of (a) § = 0.5, (b) B = 0.75, (¢c) B = 0.833. Ape IS determined by the amplitude of
successive pulses within a signal envelop while w,,;. is determined by the higher frequency.



Supplementary information 10: Transient generation of dynamic and static flow patterns

using discontinuous two-tone pulses
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Figure S9. Generation of discontinuous dynamic flow patterns in a microfluidic flow focusing
system when oscillating the core inlet tube with discontinuous two-tone signals at various
oscillation frequencies and voltages applied to the audio speaker: (a) 20 + 40 Hz at 0.5 V, (b),
15+30Hzat1.0V,and (c) 125+ 25Hzat 2.5 V.



Supplementary information 11: The effect of inlet tube length on the dynamics of the system
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Figure S10. Studying the effect of inlet tube length on the dynamics of the system:
(a) Schematics. (b-d) Snapshot images showing the extent of the leading vortex at tube lengths

of 40, 60 and 80 cm. (e) Reduction in the extent of the leading vortex when increasing the

length of the inlet tube.



Supplementary information 12: The effect of channel length on the dynamics of the system
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Figure S11. Studying the effect of microfluidic channel length on the dynamics of the system:
(a) Schematics. (b-d) Snapshot images showing the extent of the leading vortex at channel
lengths of 1.6, 3.2 and 4.8 mm. (e) Reduction in the extent of the leading vortex when

increasing the length of the microfluidic channel.



Supplementary information 13: The effect of bulk flow rate on the dynamics of the system
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Figure S12. Studying the effect of bulk flow rate on the dynamics of the system. Results
indicate the formation of rib, rib + vortex and vortex flow patterns when increasing the
operating voltage of the audio speaker from 0.5 V to 2.5 V. Increasing the flow rate leads to
the extension of rib and vortex flow patterns within the expansion chamber due to

augmentation of inertial effects.



Supplementary information 14: Generation of complex flow patterns in a three-inlet

microfluidic flow focusing system
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Figure S13. Generation of dynamic flow patterns in a three-inlet microfluidic flow focusing
system when oscillating the core inlet tube with two-tone signals at frequency ratios of
B = f,/fi = 0.5 and 0.75 and various levels of the voltage applied to the audio speaker:
(a) Experimental setup, (b) Vipeaker = 2.5V, (€) Vspeaker = 2.5V, (d) Vspeaker = 1.0 V.



Supplementary information 15: Modulation of droplet size by axial tube oscillation
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Figure S14. Tube oscillation changes the dynamics of droplet generation: (a) Schematics of
the droplet generation setup. (b) Uniformly sized water droplets generated under no oscillation
conditions. (c) Tube oscillation at 0.26-0.46 V leads to generation of a pair of small and large
droplets whereas tube oscillation at 0.47-0.7 V leads to generation of only large droplets. (d)
Variations of droplet size against speaker voltage, with error bars corresponding to average+
standard deviation obtained from three independent experiments. (e-f) Closeup images at the
orifice reveal the cyclic advancement/retraction of tapered core flow towards/from the orifice

in response to dynamic changes of core flow rate.



Supplementary information 16: Generation of harmonic flow patterns in whole blood using
two-tone signals (Blood sheathed by HBSS)
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Figure S15. Generation of dynamic flow patterns when utilising the whole blood as the core
liquid and oscillating the core inlet tube with two-tone signals at frequency ratios of
B = f>/fi = 0.5 and 0.75 and various levels of the voltage applied to the audio speaker: (a)
Vspearer = 5-0 V, (b) Vepearer = 2.5V, (€) Vapeaker = 1.0V, (d) Vepeaker = 0.5 V.



Supplementary information 17: Generation of harmonic flow patterns in a viscous solution

using two-tone signals
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Figure S16. Generation of dynamic flow patterns at a viscosity ratio of ¢ =
Ueore/ Usheatnh = 3 When oscillating the core inlet tube with two-tone signals at frequency
ratios of B = f,/f; = 0.5 and 0.75 and various levels of the voltage applied to the audio
speaker: (@) Vspearer = 50V, (0) Vipearer = 2.5V, (€) Vspearer = 1.0V, (d) Vopeaker =
0.5V.



Supplementary information 18: Measuring the haemolysis of red blood cells under various

tube oscillation conditions
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Figure S17. Haemolysis of red blood cells by analysing the haemoglobin level in cell-free
plasma using a spectrophotometer under various tube oscillating conditions. Error bars

correspond to average + standard deviation obtained from three independent experiments.



Supplementary information 19: Generation of harmonic flow patterns in whole blood using

two-tone signals (HBSS sheathed by Blood)
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Figure S18. Generation of dynamic flow patterns when utilising the whole blood as the sheath
flow and oscillating the core inlet tube with two-tone signals at frequency ratios of
B = f>/fi = 0.5 and 0.75 and various levels of the voltage applied to the audio speaker: (a)
Vspeaker = 5.0V, (0) Vipearer = 2.5V, (C) Vspeaker = 1.0V, (d) Vspeqker = 0.5 V.



Supplementary information 20: Generation of harmonic flow patterns in water-based

solutions using two-tone signals
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Figure S19. Generation of dynamic flow patterns when oscillating the core inlet tube with
two-tone signals at frequency ratios of 8 = f,/f; = 0.5 and 0.75 and various levels of the

voltage applied to the audio speaker: () Vipeaker = 5.0V, (B) Vspeaker = 2.5V,

(C) Vspeaker = 1.0 V, (d) Vspeaker = 0.5 V.



Supplementary information 21: Analysis of flow pattern map for oscillating blood flow

a 5.0V|| 30Hz+15Hz | 0.0667 sec

<Time
Reoscillating =1.99

7
o ==
g — 0.133 sec
3 “.“"-\ '

poolg|

. (@)
o {TSNe - R (@)
B % : ™
T oi N N 1 = —
o . 0.5V|| 40Hz + 20 Hz 0.05 sec
s ey 0.04 0.11]
5.0V|[ 15Hz+7.5Hz | 0133 sec
ok
e
|f o]
] ]
<3 o
9] o
@ n
A 4 8
0.5V|| 40Hz+30Hz —
' =

0.10 0.26 0.21 0.02

Figure S20. Flow pattern map correlating the evolution of rib and vortex patterns in whole
blood to Re,scinaring for the cases of (top) blood sheathed by HBSS and (bottom) HBSS
sheathed by blood.



Supplementary information 22: Generation of harmonic flow patterns in in a water-glycerol

mixture using three-tone signals
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Figure S21. Generation of dynamic flow patterns in a water-glycerol mixture to resemble
whole blood (¢ = Ugiyceroi-water/ Bwater = 3.5) When oscillating the core inlet tube with a
three-tone signal by combining 30, 29.5 and 15 Hz sine waves: (a) The three-tone waveform

used for axial oscillation of the core inlet tube, (b) Complex vortex patterns evolved over time.



Supplementary information 23: Generation of harmonic flow patterns in water-based

solutions using three-tone signals
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Figure S22. Generation of dynamic flow patterns in a microfluidic flow focusing system when
oscillating the core inlet tube with a three-tone signal by combining 15, 14.5 and 7.5 Hz sine
waves: (a) The generated three-tone waveform used for the axial oscillation of the core inlet

tube, (b) Complex rib and vortex patterns evolved over time.



Supplementary information 24: Generation of harmonic flow patterns in water-based

solutions using three-tone signals within a three-inlet microfluidic flow focusing system
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Figure S23. Generation of dynamic flow patterns in a three-inlet microfluidic flow focusing
system when oscillating the core inlet tube with a three-tone signal by combining 15, 14.5 and
7.5 Hz sine waves: (a) The three-tone waveform used for axial oscillation of the core inlet
tube, (b) Complex rib and vortex patterns evolved over time.



Supplementary information 25: Experimental setup for stimulation of PBMCs
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Figure S24. Experimental setup for stimulation of PBMCs: (a) Schematics for recirculation
of PBMCs. (b) Actual photograph of the setup with the closeup image showing an ibidi p-
slide VI®! microfluidic structure interfaced with a peristaltic pump using Tygon® tubes. The
inlet tube connected to the ‘with oscillation’ channel is oscillated at 40 Hz using an audio

speaker.



Supplementary information 26: Variations of shear rate in the oscillating inlet tube and the

ibidi p-slide VI%! microfluidic channel used for stimulation of PBMCs
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Figure S25. Variations of shear rate in the oscillating inlet tube (Atype = 1.5 MM, fiupe =
40 Hz) and the ibidi p-slide V1% microfluidic channel used for stimulation of PBMCs during

one cycle obtained by numerical simulations.
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Figure S26. Variations of flow velocity in the oscillating inlet tube (A¢ype = 1.5 MM, fiype =
40 Hz) and the ibidi p-slide V1% microfluidic channel used for stimulation of PBMCs during

one cycle obtained by numerical simulations.



