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1 Analytical model for the nonuniform electric field

1.1 Electric field solution in elliptical coordinates

We begin by considering the geometry presented in Fig. 2d of the main Manuscript, which shows two 

dielectric interfaces demarcated by hyperbolas (  const.) in the elliptical system of coordinates . 𝜈 = (𝜇,𝜈)

The space between the hyperbolas, considered to be the outside region ( ), is filled with a dielectric 𝜊

material of permittivity  and conductivity , while the region inside ( ) dielectric posts has a permittivity 𝜖𝑜 𝜎𝑜 𝑖
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of  and conductivity . For this configuration, the foci of hyperbolas lay in the -axis, at coordinates 𝜖𝑖 𝜎𝑖 𝑥

, and , and hyperbolas are separated a distance . Our objective is to obtain the (𝑎,0) ( ‒ 𝑎,0) 𝐺 = 2𝑎cos 𝜈0

electric potential and the electric field inside the region of interest , , which is chosen 0 ≤ 𝜇 ≤ 𝜇0 0 ≤ 𝑣 < 2𝜋

to approximate the two- triangle constriction geometry in the microfluidic channel.

As boundary condition, a DC voltage  is applied at the  boundary outside of the inner dielectric,   𝑉0 𝜇0

where , and a  voltage at the lower end, where  and . These 𝑣0 ≤ 𝑣 ≤ 𝜋 ‒ 𝑣0 ‒ 𝑉0 𝜇 = 𝜇0 𝜋 + 𝑣0 ≤ 𝑣 ≤ 2𝜋 ‒ 𝑣0

boundaries at  are chosen to be separated exactly by a distance  along the y-axis, and thus one can 𝜇 = 𝜇0 𝐿

define the relevant electric field magnitude  that approximates the experimental condition 𝐸0 = 2𝑉0/𝐿 = Δ𝑉/𝐿

of applying an outer electric field . There are two electric potentials that need to be determined inside 𝐸0�̂�

the region of interest, corresponding to the potential inside the dielectric tips, , and the potential on the 𝜙𝑖

outside medium, . The symmetry of the problem requires that , 𝜙𝑜 𝜙𝑘(𝜈,𝜇) = 𝜙𝑘(𝜋 ‒ 𝜈,𝜇)

 for , and ; this allows reducing the problem to finding the 𝜙𝑘(𝜋 + 𝜈,𝜇) = 𝜙𝑘(2𝜋 ‒ 𝜈,𝜇) 𝑘 = 𝑖,𝑜 𝜙𝑜(𝜈,0) = 0

potential solution on the first quadrant only. Neglecting the contribution of the EDL to the external field 

as an approximation, we can expect that the fluid outside the EDL is electroneutral and of constant 

conductivity. Under these conditions, the electric potential distributions  are governed by Laplace’s 𝜙𝑘(𝜇,𝜈)

equation:

(S1)∇2𝜙𝑘 = 0

where the Laplacian in elliptic coordinates takes the form

 (S2a)
∇2 =

1

𝑎2(sinh2 𝜇 + sin2 𝜈)( ∂2

∂𝜇2
+

∂2

∂𝜈2)

Fig. S1. Conformal mapping between rectangular and elliptic coordinates, for the first quadrant. A) 
Rectangular coordinates, with the corresponding boundary conditions for the electric potential inside (

) and outside ( ) of the dielectric posts. B) Mapping to elliptic coordinates of system in A). 

𝜙𝑖𝑛 𝜙𝑜
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by introducing the mapping:

 (S2b)𝑥 = 𝑎cosh 𝜇cos 𝜈

 . (S2c)𝑦 = 𝑎sinh 𝜇sin 𝜈

The potential inside and outside the dielectrics can be obtained by mapping the first quadrant in rectangular 

coordinates to elliptic coordinates through eqns (S2b,c). Figure S1a,b illustrates this mapping, along with 

the boundary conditions in the mapped rectangular plane. Equation S1 is subject to the following boundary 

conditions:

 , , ,     (S3a)𝜙𝑜(𝜇0,𝜈) = 𝑉0 𝜙𝑖(𝜇0,𝜈) = 0 𝜙𝑘(0,𝜈) = 0

 , ,    (S3b)�∂𝜙𝑜

∂𝜈 |𝜋/2 = 0 𝜙𝑖(𝜇,0) = 0

, (S3c)𝜙𝑖(𝜇,𝜈0) = 𝜙𝑜(𝜇,𝜈0)

(S3d)�̂� ∙ (𝐽𝑖 ‒ 𝐽𝑜) = �̂� ∙ (𝜎𝑖𝐸𝑖 ‒ 𝜎𝑜𝐸𝑜) = 0,

where eqn (S3d) has been derived by applying the current continuity boundary condition between 

materials. Here,  is the interface unit normal vector, and  is the current density inside each material. �̂� 𝐽𝑘

Equation (S3d) can be rewritten in terms of the electric potential to find:

, (S3e)�∂𝜙𝑜

∂𝜈 |𝜈0
= 𝑞�∂𝜙𝑖

∂𝜈 |𝜈0
 

where .𝑞 = 𝜎𝑖/𝜎𝑜

Because the Laplacian operator is separable in elliptic coordinates, we assume that eqn (S1) has non-trivial 

solutions of the form, , where . The outer region is subject to non-homogeneous 𝜙𝑘 = 𝑀𝑘(𝜇)𝑁𝑘(𝜈) 𝑘 = 𝑖,𝑜

boundary conditions, and thus its solution can be separated into  where  is contingent on 𝜙𝑜 = 𝜙𝑜,1 + 𝜙𝑜,2 𝜙𝑜,1

the homogeneous boundary value problem:

 , (S4a)𝜙𝑜,1(𝜇0,𝜈) = 𝑉0 𝜙𝑜,1(0,𝜈) = 0

  . (S4b)�∂𝜙𝑜,1

∂𝜈 |𝜋/2 = �∂𝜙𝑜,1

∂𝜈 |𝜈0
= 0
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It can be shown that eqn (S1) subject to conditions (S4a,b) can be generally solved by a function of the 

form , with , and . The full solution on the outside is thus required to have the form:𝐴𝜇 + 𝐵 𝐵 = 0 𝐴 = 𝑉0/𝜇0

𝜙𝑜 = 𝜙𝑜,2 +
𝜇
𝜇0

𝑉0

With the  condition taken care of, the potential  can be found by setting the source  to 𝜙𝑜,1(𝜇0,𝜈) = 𝑉0 𝜙𝑜,2 𝑉0

zero:

 , ,       (S5a)𝜙𝑜,2(𝜇0,𝜈) = 0 𝜙𝑜,2(0,𝜈) = 0

 ,   (S5b)�∂𝜙𝑜

∂𝜈 |𝜋/2 = 0
 

Since solutions to  have the separable form , we find after examination of the 𝜙𝑜,2 𝜙𝑜,2(𝜇,𝜈) = 𝑀(𝜇)𝑁(𝜈)

eigenvalues that:

       (S6a)𝑀(𝜇) = 𝑐1cos (𝛼𝜇) + 𝑐2sin (𝛼𝜇)

        (S6b)𝑁(𝜈) = 𝑐3exp (𝛼𝜈) + 𝑐4exp ( ‒ 𝛼𝜈)

where application of condition (S5a) leads to , and the quantization of eigenvalues :𝑐1 = 0 𝛼

.      (S7)
𝛼𝜇0 = 𝑚𝜋 ⇒𝛼 =

𝑚𝜋
𝜇0

,  𝑚 ∈ 𝑍 

Using condition (S5b) we eliminate one of the coefficients in eqn (S6b), so that 

. The superposition principle states that a solution can be constructed 𝑁(𝜈) = 𝑐4[exp 𝛼(𝜈 ‒ 𝜋) + exp ( ‒ 𝛼𝜈)]

from the sum of all eigenfunctions:

      (S8)
𝜙𝑜,2(𝜇,𝜈) =

∞

∑
𝑚 = 1

𝐴𝑚[exp
𝑚𝜋
𝜇0

(𝜈 ‒ 𝜋) +  exp ‒
𝑚𝜋
𝜇0

𝜈]sin (𝜇𝜋𝑚
𝜇0

)
where coefficients   and  have been absorbed in the coefficient , and the infinite sum is taken from 𝑐1 𝑐4 𝐴𝑚

 onwards (as the zero value leads to a trivial zero solution). Thus, the complete outside of the 𝑚 = 1

dielectric has the form:
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. (S8)
𝜙𝑜(𝜇,𝜈) =

∞

∑
𝑚 = 1

𝐴𝑚[exp
𝑚𝜋
𝜇0

(𝜈 ‒ 𝜋) +  exp ‒
𝑚𝜋
𝜇0

𝜈]sin (𝜇𝜋𝑚
𝜇0

) +
𝜇
𝜇0

𝑉0

By similar arguments, it can be shown that the potential inside of the dielectric has the form:

(S9)
𝜙𝑖(𝜇,𝜈) =

∞

∑
𝑚 = 1

𝐵𝑚sinh (𝑚𝜋𝜈
𝜇0

)sin (𝜇𝜋𝑚
𝜇0

)
which is not subject to inhomogeneous boundary conditions. To obtain the potentials inside and outside 

of the dielectric, it suffices to apply the interface boundary conditions (S3c,e) to eqns (S8) and (S9) to 

determine the coefficients  and  . Solving the resulting systems of equations leads to:𝐴𝑚 𝐵𝑚

(S10)

𝐴𝑚 =  

( ‒ 1)𝑚(1 + ⅇ

2𝑚𝜋𝜈0
𝜇0 )𝑞 𝑉0

𝑚𝜋(1
2

ⅇ

𝑚𝜋(𝜈0 ‒ 𝜋)
𝜇0 (1 + ⅇ

2𝑚𝜋𝜈0
𝜇0 ( ‒ 1 + 𝑞) + 𝑞) + 𝑞cosh (𝑚𝜋𝜈0

𝜇0
) + sinh (𝑚𝜋𝜈0

𝜇0
))

(S11)

𝐵𝑚 =  

2( ‒ 1)𝑚( ‒ 1 + ⅇ

𝑚𝜋(2𝜈0 ‒ 𝜋)
𝜇0 ) 𝑉0

𝑚𝜋(1
2

ⅇ

𝑚𝜋(𝜈0 ‒ 𝜋)
𝜇0 (1 + ⅇ

2𝑚𝜋𝜈0
𝜇0 ( ‒ 1 + 𝑞) + 𝑞) + 𝑞cosh (𝑚𝜋𝜈0

𝜇0
) + sinh (𝑚𝜋𝜈0

𝜇0
))

The outside and inside potentials thereby read:

 (S12)

𝜙𝑜(𝜇,𝜈) =
∞

∑
𝑚 = 1

( ‒ 1)𝑚(1 + ⅇ

2𝑚𝜋𝜈0
𝜇0 )𝑞 𝑉0(𝑒

𝑚𝜋
𝜇0

(𝜈 ‒ 𝜋)

+  𝑒
‒

𝑚𝜋
𝜇0

𝜈

)sin (𝑚𝜋𝜇
𝜇0

)
𝑚𝜋(1

2
ⅇ

𝑚𝜋(𝜈0 ‒ 𝜋)
𝜇0 (1 + ⅇ

2𝑚𝜋𝜈0
𝜇0 ( ‒ 1 + 𝑞) + 𝑞) + 𝑞cosh (𝑚𝜋𝜈0

𝜇0
) + sinh (𝑚𝜋𝜈0

𝜇0
))

+
𝜇
𝜇0

𝑉0
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 . (S13)

𝜙𝑖(𝜇,𝜈) =
∞

∑
𝑚 = 1

2( ‒ 1)𝑚( ‒ 1 + ⅇ

𝑚𝜋(2𝜈0 ‒ 𝜋)
𝜇0 ) 𝑉0sinh (𝑚𝜋𝜈

𝜇0
)sin (𝑚𝜋𝜇

𝜇0
)

𝑚𝜋(1
2

ⅇ

𝑚𝜋(𝜈0 ‒ 𝜋)
𝜇0 (1 + ⅇ

2𝑚𝜋𝜈0
𝜇0 ( ‒ 1 + 𝑞) + 𝑞) + 𝑞cosh (𝑚𝜋𝜈0

𝜇0
) + sinh (𝑚𝜋𝜈0

𝜇0
))

Equations (S12) and (S13) represent the exact solution to the problem in Fig. S1. Our interest lays in 

determining the analytic expressions for the electric field. Noting that in elliptic coordinates, the electric 

field can be found through the formula:

       (S14)
𝐸𝑘(𝜇,𝜈) = ‒

1
ℎ𝜇

∂𝜙𝑘

∂𝜇
�̂� ‒

1
ℎ𝜈

∂𝜙𝑘

∂𝜈
�̂� 

where  ,  are the unit vectors in elliptic coordinates, with  as scale factors. In �̂� �̂� ℎ𝜇 = ℎ𝜈 = 𝑎 sinh2 𝜇 + sin2 𝜈

particular, we are interested in finding the nonuniform field along the -axis ( ) outside of the dielectric 𝑦 𝑥 = 0

( ), or equivalently, at  Applying the derivatives in eqn (S14) to eqns (S12,13), and using the 𝑘 = 𝑜 𝜈 = 𝜋/2.

mappings in eqns (S2b,c), it can be shown after mathematical manipulation that the field along the -axis 𝑦

for the triangular post geometry is:

, (S14)

𝐸𝑡(0,𝑦) =
‒ 𝐸0

Ω𝜇0 1 + (𝑦
𝑎)2[1 + 𝑅𝑒{ ∞

∑
𝑚 = 1

𝛼𝑚(𝑦
𝑎

+ 1 + (𝑦
𝑎)2)

𝑖𝑚𝜋
𝜇0 }]�̂�

where the summation coefficients  are given by:𝛼𝑚

 ,

𝛼𝑚 =  
4( ‒ 1)𝑚 + 1(1 + 𝑔2𝑚)ℎ𝑚 2𝑞 (1 ‒ 𝑞) ‒ 1

𝑔3𝑚 + ( ℎ
𝑔 )𝑚 ‒ (𝑔𝑚 + (ℎ𝑔)𝑚)(1 + 𝑞

1 ‒ 𝑞)
with the geometric functions , , and . Moreover, the 𝑔 = exp (𝜋𝜈0𝜇 ‒ 1

0 ) ℎ = exp (𝜋2𝜇 ‒ 1
0 ) 𝜇0 = ln (Ω ‒ 1 + Ω ‒ 2 + 1)

quantity:

(S15)Ω = 2𝑎/𝐿
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has been introduced, which denotes the ratio between the interfocal distance  and the length of the 2𝑎

microdevice . The subindex  in eqn (S14) has also been introduced to denote the solution for the 𝐿 𝑡

triangular geometry.

1.2 Approximations of Amplification Factor scaling laws at limiting cases

In the calculation of the amplification factors for the circular posts geometry (eqn (9) in the main 

Manuscript), there appears an infinite sum term that precludes an intuitive interpretation of the scaling of 

the amplification factor  with the geometrical parameter  (the gap to post ratio), for the simplified Ψ𝑐(𝛾,𝑞) 𝛾

case . The objective of this section is to perform a series of approximations on eqn (9) of the main 𝑞 = 0

Manuscript to arrive at a simple and intuitive expression that shows the scaling of   with the geometrical Ψ𝑐

parameter . Concretely, we wish to simplify the term:𝛾

(S16)
1 ‒ 8 ⋅

∞

∑
𝑚 = 1

𝑚( ‒ 1)𝑚

𝑔(𝛾)2𝑚 ‒ 1

where:

 .𝑔(𝛾) =  1 +  𝛾 +  𝛾(𝛾 +  2)

Here,  contains the geometric information needed for calculating . Since the limit  means posts 𝑔(𝛾) Ψ𝑐 𝛾 ≫ 1

are very far apart from each other, this translates into no amplification, and thus one intuitively expects 

 (as confirmed by direct evaluation in Fig. 3 in the main Manuscript). The limiting case of the Ψ𝑐→1

opposite end, i.e., , is not intuitively calculated. We begin by approximating the geometric term 𝛾 ≪ 1

elevated to the -th power in eqn (S16) by a Puiseux series centered at :𝑚 𝛾 = 0

(1 +  𝛾 +  𝛾(𝛾 +  2))2 = 1 + 4𝛾 + 2𝛾2 + 2 𝛾(𝛾 + 2) + 2𝛾 ≈ 1 + 2 2𝛾 + 4𝛾 + 𝑂(𝛾3/2)

Neglecting higher order terms, the summation then becomes:

 .
1 ‒ 8 ⋅

∞

∑
𝑚 = 1

𝑚( ‒ 1)𝑚

(1 + 2 2𝛾 + 4𝛾)𝑚 ‒ 1

The trinomial to the -th power can again be approximated by a Puiseux series at , and thus:𝑚 𝛾 = 0
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(1 + 2 2𝛾 + 4𝛾)𝑚 ≈ 1 + 2 2𝛾𝑚 + 4𝛾𝑚2 + 𝑂(𝛾3/2)

Neglecting higher order terms and inserting this expression into the summation gives:

.
1 ‒ 8 ⋅

∞

∑
𝑚 = 1

𝑚( ‒ 1)𝑚

1 + 2 2𝛾𝑚 + 4𝛾𝑚2 ‒ 1
= 1 ‒ 4 ⋅

∞

∑
𝑚 = 1

( ‒ 1)𝑚

2𝛾 + 2𝛾𝑚

Factorizing the term  out of the summation yields:1/ 2𝛾

 .
1 ‒

4
2𝛾

⋅
∞

∑
𝑚 = 1

( ‒ 1)𝑚

1 + 2𝛾𝑚

At this point, we note that the summation resembles form of a Lerch transcendent:

(S17)
Φ(𝑧,𝑠,𝑎) =

∞

∑
𝑘 = 0

𝑧𝑘

(𝑎 + 𝑘)𝑠
 

which can be connected to the polygamma function through the following identity:

(S18)

∞

∑
𝑘 = 0

( ‒ 1)𝑘

𝑧𝑘 + 1
=

Φ( ‒ 1,1,𝑧 ‒ 1)
𝑧

=
1

2𝑧(𝜓0(𝑧 + 1
2𝑧 ) ‒ 𝜓0( 1

2𝑧))

where  denotes the zeroth order polygamma function (or digamma function): 𝜓0

 . (S19)
𝜓0(𝑥) =

𝑑
𝑑𝑥

ln (Γ(𝑥)) =
Γ'(𝑥)
Γ(𝑥)

~ln 𝑥 ‒
1

2𝑥

Since the summation can be split into the first and the rest of the terms different from , we write:𝑘 = 0

,

∞

∑
𝑘 = 0

( ‒ 1)𝑘

𝑧𝑘 + 1
= 1 +

∞

∑
𝑘 = 1

( ‒ 1)𝑘

𝑧𝑘 + 1
 

and thus:

.
1 +

∞

∑
𝑘 = 1

( ‒ 1)𝑘

𝑧𝑘 + 1
=

1
2𝑧(𝜓0(𝑧 + 1

2𝑧 ) ‒ 𝜓0( 1
2𝑧)) 

Substituting , and , we find:𝑧 = 2𝛾 𝑘 = 𝑚
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 .

∞

∑
𝑚 = 1

( ‒ 1)𝑚

2𝛾𝑚 + 1
=

1
2 2𝛾(𝜓0( 2𝛾 + 1

2 2𝛾 ) ‒ 𝜓0( 1
2 2𝛾)) ‒ 1

Replacing the above summation into our original equation yields:

1 ‒
4
2𝛾

⋅ ( 1
2 2𝛾(𝜓0( 2𝛾 + 1

2 2𝛾 ) ‒ 𝜓0( 1
2 2𝛾)) ‒ 1) =

 .
1 +

1
𝛾(𝜓0( 1

2 2𝛾) ‒ 𝜓0( 2𝛾 + 1
2 2𝛾 )) +

4
2𝛾

Recalling the approximation for the digamma function in eqn (S19)  simplifies the above equation into:

,
1 ‒

2
1 + 2𝛾

+ 2
2
𝛾

+
ln (2

𝛾) ‒ 2ln (2 +
2
𝛾)

2𝛾

which to zeroth order approximation is equal to:

 .
1 ‒

2
1 + 2𝛾

+ 2
2
𝛾

+
ln (2

𝛾) ‒ 2ln (2 +
2
𝛾)

2𝛾
≈

2
𝛾

+ 𝑂(𝛾1/2)

Thus, the amplification factor at the origin for the bipolar coordinate system, assuming  and , 𝑞 = 0 𝛾 ≪ 1

scales as:

 . (S20)
Ψ𝑐(𝛾) ~

2
𝛾

+ 𝑂(𝛾1/2)
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2 Computational model for the nonuniform electric field

2.1 3D Model Geometry for the E-Field Optimization

We illustrate the 3D Geometry used in the computational model to numerically compute the results 

presented in Fig. 4A-E. The amplification factors (  and ) plotted in Fig. 4A,B were obtained by Ψ𝑁
𝑐 Ψ𝑁

𝑡

extracting the amplification factor at  for both the circular and triangular 3D geometries 𝑥 = 𝑦 = 0

(corresponding to the maximum amplification along a 10,000 µm cutline, shown in red in Fig S2A) On 

the other hand, the magnitude of the electric current density at the gap region (plotted in Fig. 4C,D) was 

numerically computed by dividing the electric flux 𝐀 by the area of the constriction at different 𝜙𝐸 = ∫𝐸 ⋅ 𝑑

gap sizes—i.e., effectively averaging the electric field over the constriction area—and multiplying the 

resulting quantity by . Here, constriction area was defined as the product of the gap length by the device 𝜎𝑚

height ( , with  = 40 µm), this is illustrated in Fig. S2B. The same procedure was followed to compute 𝐺 ∙ 𝐻 𝐻

the magnitude of the average of the gradient of the electric field squared over the constriction area (

, plotted in Fig. 4E) with the electric flux integral being replaced by .  |∇(𝐸 ∙ 𝐸)| Φ∇(𝐸 ∙ 𝐸) = ∫∇(𝐸 ∙ 𝐸) ∙ 𝑑𝐴

Fig. S2. Illustration of the 3D geometry used in the computational model. A) Illustration of the 10,000 µm cutline (red) extending across 
the length of the channel as well as a conceptual illustration of the displacement of an ideal particle (blue) moving from the positive to the 
negative electrode along the cutline. B) Illustration of the constriction area at x = y = 0 µm used for computing  and .|𝐽| |∇(𝐸 ∙ 𝐸)|
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     Furthermore, the theoretical first trapping results are defined as the applied potential difference at which 

particles begin to trap (i.e., when there is a balance of the linear EO and EP phenomena and higher order 

effects of EP(3) for the buffer−particle−electric field system) at the gap between posts while other particles 

keep flowing through. The first trapping results presented in Fig. 5A,B and in Table 2 were calculated by 

means of eqn (6) in combination with the EK properties of Table 1 of the main Manuscript. For each 

particle and channel combination we computed the mean velocity ( ) that an ideal particle like the one 𝑢𝑝

Fig. S3. Plots of the theoretical mean velocity that a particle would experience when travelling across a channel configuration at a given 
voltage. The intersection between the velocity curves and the horizontal line at = 0 µm s-1 represents the voltage at which particles halt 𝑢𝑝
(i.e., zero velocity), the results are plotted for A) the 2 µm particle and B)  the 6.8 µm particle.
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shown in Fig. S2A would experience when travelling across the length of the channel while following the 

10,000 µm cutline shown in red in Fig.S2A. This enabled us to simulate the mean velocity that a given 

particle would experience in a specific channel configuration at a given electric field magnitude and use 

this information to determine the theoretical electric field magnitude—and hence, voltage—at which 

particles halt (i.e., zero velocity), the results are plotted in Fig. S3A,B for the 2 and 6.8 µm particles, 

respectively. The average relative error between the experimental and theoretical first trapping for all 

cases is 18.02% with the relative error for the ideal geometry (ID iii) being of only 3.66%. 

3 Table S1

Table S1. Conditions, definitions, and input data used in COMSOL models (see Figure 1 for more details).

Module Element (see Figure 1a) Definition

Current conservation Blue and Gray

∇ ∙ 𝐽 = 𝑄𝑗;

;  
𝐽 = (𝜎 + 𝜀0𝜀𝑟

∂
∂𝑡)𝐸 + 𝐽𝑒 𝐸 =‒ ∇𝑉

Electric insulation Channel edge 𝑛 ∙ 𝐽 = 0

Initial values Blue and Gray 𝑉0 = 0

Electric potential Left electrode (+) 𝜙 = 𝜙𝑖𝑛𝑙𝑒𝑡

Ground Right electrode (-) 𝜙 = 0

*In this table,  is the electric current,  (where  represents the volume charge density),  is an 𝐽
𝑄𝑗 =‒

𝑑𝜌𝑣

𝑑𝑡 𝜌𝑣 𝐽𝑒

external electric current density.

4 Table S2

Table S2. Input and mesh parameters used for COMSOL simulations. 
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Parameter Value Units

*Electric conductivity of the medium,  𝜎𝑜 25 [µS/cm]

Permittivity of medium, 𝜖𝑜 80.00 [adim.]

Electric conductivity of the PDMS, 𝜎𝑖 2.5E-8 [µS/m]

Permittivity of PDMS, 𝜖𝑖 2.75 [adim.]

Type of mesh elements Tetrahedral N/A

* Measured experimentally in our laboratory.

5 Video S1: Fluorescent analysis

The fluorescence intensity data (background subtracted) near the constriction versus time (i.e., the applied 

voltage) were fitted into two segments, whose intersection point was taken as a variable optimized using 

the least squares method by a customized MATLAB R2018b (Mathworks Inc., Natick, MA) code. The 

applied voltage corresponding to the determined intersection point between the segments was extracted 

as the total trapping voltage (See Table 2). This enables an automatic and objective determination of the 

trapping voltage. All experiments were run in triplicate to ensure reproducibility. We found that we could 

increase the accuracy of our total trapping determination method by defining two regions of interest (ROI), 

one on the left and one on the right of the constriction; this reduced the average standard deviation between 

trials from 31.27 V to 23.35 V. We then determined the background intensity for each voltage as the ± ±

difference between the average fluorescence level prior to the first trapping voltage (shown in Table 2) 

and the intensity at the region located after the posts, further reducing the average standard deviation 

between trials to 18.46 V. A possible explanation for the effectiveness of this method is that prior to ±

first trapping, particles are still crossing the channel and contributing to the overall intensity level, so by 

subtracting the average background intensity of the particles flowing across the channel, we registered an 

increase in fluorescence when particles truly begin trapping. The S1 video demonstrates the 

implementation of this method, with the top left corner showing one trial with the 6.8 m particle in the 𝜇

ID iii device shown in Fig. 1B iii of the main text, the bottom showing the fluorescence intensity graph as 

the experiment progresses, and the top right corner showing the slope difference between datapoints 
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allowing for the determination of the best intersection point between two piecewise segments adjusting 

the data. 


