9 * Corresponding author

13 As shown in Fig. S1(a), ${ }^{d i v}$ is defined as the length of the fringe produced by a single sawtooth

$$
\begin{equation*}
{ }_{16} L_{d i v}=\frac{h_{s t}}{\sin \theta_{s t}} \tag{S1}
\end{equation*}
$$

18 Fig. $\mathrm{S} 1(\mathrm{~b})$ is the expanded view of Fig. S1(a). The distance between the two fringes is $k \lambda_{\theta}-h_{\theta}$, 19 where the blue line represents the resulting divergent fringe. The angle at which the divergent

Supplementary Information

Microfluidic acoustic sawtooth metasurfaces for patterning

 and separation using traveling surface acoustic wavesMingxin Xu, Peter VS Lee, David Collins*

Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia

E-mail: david.collins@unimelb.edu.au

Supplementary Note 1: Analytical formal and derivation for non-integer k values

 element (equals to the length of the hypotenuse of each triangle element), written as fringe increases relative to $\theta_{\text {st }}$ is defined as ${ }^{\text {inc }}$, which is calculated as:21

27 and (S2) with $\theta_{\text {div }}^{+}$, this becomes
28
$\theta_{\text {div }}^{+}=\theta_{s t}+\theta_{i n c}^{+}=\theta_{s t}+\tan ^{-1}\left(\frac{\left(k \lambda_{\theta}-h_{\theta}\right) \sin \theta_{s t}}{h_{s t}}\right)$
30

31 Conversely, for $\theta_{d i v}$ slightly smaller than $\theta_{\text {st }}$, this expression incorporating $\theta^{-}{ }^{-}$(superscript
32 " - " for $\theta_{\text {div }}$ is slightly smaller than $\theta_{\text {st }}$) is expressed as:
33

34

42 FIG. S2. Analytical modelling results, plotting $\theta_{\text {div }}$ as a function of $\theta_{\text {st }}$ and σ, overlaid with red
43 lines corresponding to $k=1, k=2$ and $k=3$.
${ }_{50} \frac{1}{\lambda_{\theta}} \sin \left(\theta_{t}\right)=\frac{1 d \varphi(y)}{2 \pi d y}$,

$$
\begin{equation*}
58 d y=\frac{h_{s t}}{k \tan \left(\theta_{s t}\right)} \tag{S6}
\end{equation*}
$$

60 Substituting equation (S6) into equation (S5) with $d \varphi(y)=2 \pi$, and rewriting equation (S5)
${ }_{63} \frac{1}{\lambda_{\theta}} \sin \left(\theta_{d i v}\right)=\frac{k \tan \left(\theta_{s t}\right)}{h_{s t}}$,
64 (equal to $\theta_{d i v}$) as shown in Fig. S3. $d y$ is the length along the y axis for which the equivalent phase shift $(d \varphi(y))$ is equal to 2π.

As shown in Fig. S3, $d y=w_{s t} / k$, where $w_{s t}=\mathrm{h}_{s t} / \tan \left(\theta_{s t}\right)$. Therefore, $d y$ is expressed as: yields the generalized Snell's law for our sawtooth metasurfaces:

Supplementary Note 2: Deriving generalized Snell's law for the proposed metasurfaces.

For acoustic waves that incident perpendicular to the metasurface (the incidence angle is 0), the generalized Snell's law of refraction is written as [1]:

Where the fringe spacing λ_{θ} is described in equation (1), θ_{t} is the equivalent refraction angle

66 FIG. S3. Schematic diagram of deriving generalized Snell's law. For $k=1$ and $k=2$.

70 71

0.0003 W

0.01 W

0.001 W

0.03 W

0.003 W

0.1 W

85 FIG. S7. Input power effects. Experimental results with $\lambda_{S A W}=100 \mu m$ and $k=1$, for the input power of the transducer is (a) 0.0003 W , (b) 0.001 W , (c) 0.003 W , (d) 0.01 W , (e) 0.03 W , and 87 (f) 0.1 W . Scale bars is $200 \mu \mathrm{~m}$.

88

89

90 FIG. S8. Experimental results demonstrating filling without bubble formation at low perfusion 91 flow rates ($\sim 7 \mu \mathrm{~L} / \mathrm{min}$).

92

98

FIG. S9. Examples and acoustic pressure field simulations of sawtooth-like metasurfaces and other metasurfaces with $\lambda_{S A W}=100 \mu m$. (a)-(e) Sawtooth-like metasurfaces. The pattern generated by each sawtooth-like element has the same length at the dotted line to form spatially continuous patterns, where the spacing of the pattern at a given ${ }{ }_{\text {st }}$ can be calculated by equation (1). (f)-(i) Other types of metasurfaces. Scale bar is $100 \mu m$.

Reference

1. Tian Z, Shen C, Li J, Reit E, Gu Y, Fu H, et al. Programmable Acoustic Metasurfaces. Adv Funct Mater. 2019 Mar;29(13):1808489.
