ELECTRONIC SUPPLEMENTARY INFORMATION

Manipulation of cancer cells in a sessile droplet via travelling surface acoustic waves

Hyeono Nam^a, Hyung Jin Sung^{*a}, Jinsoo Park^{*b}, and Jessie S. Jeon^{*ac}

^aDepartment of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea ^bSchool of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea ^cKAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

*Corresponding Authors: Prof. Hyung Jin Sung (hjsung@kaist.ac.kr; +82-42-350-3027) Prof. Jinsoo Park (jinsoopark@jnu.ac.kr; +82-62-530-1672) Prof. Jessie S. Jeon (jsjeon@kaist.ac.kr; +82-42-350-3226)

Theoretical models for ARFs and drag force

Ideal ARF and drag forces can be employed to change the dependence of the behaviours on particle size and contact angle. The ASF-induced drag force (F_D) can be expressed as:

$$F_D = 3\pi\mu d_p u, \tag{S1}$$

and the ARF induced by standing waves (F_{RS}) as:^{1, 2}

$$F_{RS} = \pi d_p^{-2} \kappa \Phi(\tilde{k}, \tilde{\rho}) E_{ac} \sin(2kx), \qquad (S2)$$

where $\Phi(\tilde{k}, \tilde{\rho})$ is the acoustophoretic contrast factor, E_{ac} is the acoustic energy density, k is the acoustic wavenumber (= $2\pi f/c_f$), and x is the distance from the pressure node. The ARF induced by travelling waves (F_{RT}) can be expressed as:^{3,4}

$$F_{RT} = \frac{\pi d_p^2}{4} Y_T E_{ac},$$
 (S3)

where Y_T is the dimensionless ARF factor due to travelling waves. As shown in Fig. S2, 6 µm and 15 µm microparticles at low frequencies were subjected to lower F_{RT} levels than F_D and F_{RS} levels. Due to the relatively low azimuthal velocities within the sessile droplet,⁵ a region predominantly influenced by standing wave-induced ARFs formed at the center and edge of the droplet.

The component of eqn (S2), which denotes acoustophoretic contrast factor, is defined as:^{1, 2}

$$\Phi(\tilde{k},\tilde{\rho}) = \frac{1}{3} \left(\frac{5\tilde{\rho} - 2}{2\tilde{\rho} + 1} - \tilde{k} \right), \tag{S4}$$

where the parameters $\tilde{\rho}$ and \tilde{k} are written as:

$$\tilde{\rho} = \frac{\rho_p}{\rho_f},\tag{S5}$$

$$\tilde{k} = \frac{\rho_f c_f^2}{\rho_p c_p^{2'}}$$
(S6)

where ρ_p is the density of the particle, ρ_f is the density of the fluid, c_f is the speed of sound in the fluid, and c_p is the speed of sound in the particle.

The component of eqn (S3), which denotes dimensionless ARF factor, is given by:^{3, 4}

$$Y_T = -\frac{4}{\kappa^2} \sum_{n=0}^{\infty} [(n+1)(\alpha_n + \alpha_{n+1} + 2\alpha_n \alpha_{n+1} + 2\beta_n \beta_{n+1})],$$
(S7)

where κ is κ -factor, and α_n and β_n are defined as:

$$\alpha_n = -\frac{[F_n j_n(\kappa) - \kappa j_n'(\kappa)]^2}{[F_n j_n(\kappa) - \kappa j_n'(\kappa)]^2 + [F_n y_n(\kappa) - \kappa y_n'(\kappa)]^2},$$
(S8)

$$\beta_n = -\frac{[F_n j_n(\kappa) - \kappa j_n'(\kappa)][F_n y_n(\kappa) - \kappa y_n'(\kappa)]}{[F_n j_n(\kappa) - \kappa j_n'(\kappa)]^2 + [F_n y_n(\kappa) - \kappa y_n'(\kappa)]^2'}$$
(S9)

here j_n and y_n are the spherical Bessel functions of the order *n* of the first kind and the second kind respectively and the prime denotes the derivative for each function. The parameter F_n is given as follows:

 F_n

$$= \frac{\kappa_{2}^{2}\rho_{f}}{2\rho_{p}} \cdot \frac{\frac{\kappa_{1}j_{n}'(\kappa_{1})}{\kappa_{1}j_{n}'(\kappa_{1}) - j_{n}(\kappa_{1})} - \frac{2n(n+1)j_{n}(\kappa_{2})}{(n+2)(n-1)j_{n}(\kappa_{2}) + \kappa_{2}^{2}j_{n}''(\kappa_{2})}}{\frac{\kappa_{1}^{2}[\sigma/(1-2\sigma)j_{n}(\kappa_{1}) - j_{n}''(\kappa_{1})]}{\kappa_{1}j_{n}'(\kappa_{1}) - j_{n}(\kappa_{1})} - \frac{2n(n+1)[j_{n}(\kappa_{2}) - \kappa_{2}j_{n}''(\kappa_{2})]}{(n+2)(n-1)j_{n}(\kappa_{2}) + \kappa_{2}^{2}j_{n}''(\kappa_{2})}}$$
(S10)

where κ_1 and κ_2 are expressed as:

$$\kappa_1 = \frac{\pi d_p f}{c_{long}},\tag{S11}$$

$$\kappa_2 = \frac{\pi d_p f}{c_{shear}},\tag{S12}$$

where d_p is the particle diameter, f is the frequency, c_{long} is the longitudinal sound speed in the particle, c_{shear} is the shear sound speed in the particle. Poisson ratio of the particle (σ) in eqn (S10) is defined as:

$$\sigma = \frac{\frac{c_{long}^{2}}{c_{shear}^{2}} - 2}{\frac{2c_{long}^{2}}{c_{shear}^{2}} - 2},$$
(S13)

Above eqns are calculated as functions of particle diameter (d_p) under the frequency of 19.32 MHz.

Table S1. List of	parameters u	used for t	heoretical	models.
-------------------	--------------	------------	------------	---------

Property	Symbol	Value
Dynamic viscosity (water)	μ	1.005e-03 Pa·s
Density (water)	$ ho_{f}$	998 kg/m ³
Density (polystyrene)	$ ho_p$	1050 kg/m ³
Speed of the sound (water)	\mathcal{C}_{f}	1485 m/s
Speed of the sound (polystyrene)	C_p	1700 m/s
Longitudinal speed of the sound (polystyrene)	c_{long}	2350 m/s
Shear speed of the sound (polystyrene)	Cshear	1120 m/s

Fig. S1 S₁₁ obtained from nominal frequency of 20 MHz denotes actual frequency of 19.32 MHz.

Fig. S2 Plots of time-averaged ARFs induced by travelling waves (F_{RT}) and standing waves (F_{RS}) and drag forces induced by ASF (F_D) versus PS particle size. F_D values were calculated with three different flow velocities (labeled F_{D2} for 2 mm/s, F_{D4} for 4 mm/s, and F_{D6} for 6 mm/s) based on the azimuthal velocities inside the sessile droplet. F_{RS} and F_{RT} were calculated using an E_{ac} value of about 9.78 J/m³, with sin(2kx) of 1. The remaining properties are specified in Table S1.

Contact angle (°)

Fig. S3 Particles behaviour in a sessile droplet with different contact angles and peak-to-peak voltages. Micrographs of 10 μ m PS particles in the sessile droplet were captured 10s after the SAWs were applied (Scale bar: 500 μ m). SAWs were applied at the right lower side of each sessile droplet.

Fig. S4 MCF7 size distribution in suspension. (a) MCF7 stained by trypan blue (scale bar: $200 \mu m$). (b) Distribution of the cell diameter.

Fig. S5 Confocal orthogonal projections of patterned MCF7 (blue: nucleus, red: F-actin, green: E-cadherin, scale bar: 100 µm).

References

- 1. H. Bruus, Lab on a Chip, 2012, 12, 1014-1021.
- 2. R. Barnkob, P. Augustsson, T. Laurell and H. Bruus, Lab on a Chip, 2010, 10, 563-570.

- 3. T. Hasegawa and K. Yosioka, The Journal of the Acoustical Society of America, 1969, 46, 1139-1143.
- 4. Z. Ma, D. J. Collins, J. Guo and Y. Ai, Analytical chemistry, 2016, 88, 11844-11851.
- 5. R. V. Raghavan, J. R. Friend and L. Y. Yeo, Microfluidics and Nanofluidics, 2010, 8, 73-84.