Supplementary Information

Microfluidic harvesting of breast cancer tumor spheroid-derived extracellular

vesicles from immobilized microgels for single-vesicle analysis

Xilal Y. Rima,¹ Jingjing Zhang,¹ Luong T. H. Nguyen,¹ Aaron Rajasuriyar,¹ Min Jin Yoon,¹ Chi-Ling Chiang,¹ Nicole Walters,¹ Kwang Joo Kwak,² L. James Lee,^{1,2} and Eduardo Reátegui^{1,3*}

¹ William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210

² Spot Biosystems LLC, Palo Alto, CA, USA

³ Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210

*Corresponding Author: <u>reategui.8@osu.edu</u>

Supplementary Figure 1: Microdroplet alterations post-gelation. (a) Brightfield images demonstrate MCF7 cells encapsulated within gelled EV microbioreactors ($^{EV}\mu BRs$) for both an instant incubation and a 5 min incubation in 0.04 % acetic acid for internal gelation (left). Live cells were stained green with calcein-AM (center). Dead cells were stained red with ethidium homodimer-1 (right). (b) Cellular viability decreases with increasing incubation times of 0.04 % acetic acid for internal microdroplet gelation. Viabilities are 94.31 ± 9.85 %, 86.05 ± 16.75 %, 82.73 ± 16.99 %, 82.52 ± 16.70 %, and 81.79 ± 18.51 % for 0 min, 5 min, 10 min, 15 min, and 30 min, respectively (n = 100, error bars indicate the standard deviation). (c) The diameter of the microdroplets increases from 148.62 ± 0.55 µm to 156.86 ± 1.98 µm post-gelation (n = 100, error bars indicate the standard deviation (CV) of the microdroplets

increases from 0.44 ± 0.08 % to 1.73 ± 0.46 % post-gelation (n = 3, error bars indicate the standard deviation). All scale bars are 50 μ m (***p*-value < 0.005, ****p*-value < 0.0001).

Supplementary Figure 2: Formation of tumor spheroids within $^{EV}\mu BRs$. (a) Single suspended MCF7 cells within the $^{EV}\mu BRs$ aggregate and develop tumor spheroids, which continually grow over 10 days. (b) The corresponding boxplots (n = 25) of tumor spheroid growth over 10 days demonstrates a steady increase in area, proceeding single-cell aggregation. (c) The metabolic activity (relative to day 0) increases from 1.00 ± 0.66 to 4.42 ± 1.27 (n = 3, error bars indicate the standard deviation). All scale bars are 50 μ m (**p*-value < 0.05).

Supplementary Figure 3: Detection of differentially expressed tetraspanins on single-EVs harvested from the microfluidic system. (a) TFF-purified media, serving as the negative control, demonstrates an absence of fluorescent signal for α -CD63 and α -CD81 detection antibodies. (b) The SNR ratio depicts a significant increase in signal from ^{EV}µBRs and a slight insignificant increase in the negative control. (c) The pie chart illustrates the distribution of EVs derived from the microfluidic system. All scale bars are 5 µm (**p*-value < 0.05, ***p*-value < 0.005).

Supplementary Video 1: Flow-focusing phase mixing. The sodium-alginate stream containing MCF7 cells is introduced through the top of the top junction and the sodium-alginate stream containing 50 nm CaCO₃ nanoparticles is introduced through the sides of the top junction, where the streams combine via laminar flow. The dispersed phase then meets the continuous phase containing a fluorosurfactant diluted in a hydrofluoroether at the bottom junction to form microdroplets. The scale bar is 100 μ m.

Supplementary Video 2: Hydrodynamic locking mechanism of $^{EV}\mu BRs$. The tumor spheroid encapsulated within an $^{EV}\mu BR$ is halted at the entrance of the hydrodynamic trap, then deformed by increasing the flow rate, and locked into place within the hydrodynamic trap. The scale bar is 100 μm .