
Supplementary information

Microscale hydrodynamic confinements: shaping liquids across length scales
as a toolbox in life sciences
David P. Taylora, b, d†, Prerit Mathura, c†, Philippe Renaudb and Govind V. Kaigalaa*

a IBM Research - Europe, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

b École Polytechnique Fédérale de Lausanne (EPFL), Microsystems Laboratory 4, 1015 Lausanne,
Switzerland

 cDept. of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule (ETH), Vladimir-
Prelog-Weg 1-5/10, 8093 Zurich, Switzerland

d Current address: Dept. of Mechanical and Process Engineering, ETH Zürich, Lab of Thermodynamics in
Emerging Technologies, 8092 Zürich, Switzerland
† DT and PM made equal contributions

* Corresponding author: gov@zurich.ibm.com

Most critical sections of the numerical MATLAB tool
The startup function, which is automatically called when the app is opened, plots an exemplary flow field
for two apertures with given location and strength. This piece of code illustrates the entire workflow,
which is also employed for later, user-defined computations. Variables shared across functions are stored
in the namespace “app”. The naming and calling of variables would look a little different if everything was
implemented locally. For seeing this code, open the MATLAB App Designer, choose “open” and select the
“.mlapp” version of our tool, then switch to “Code View”

% Code that executes after component creation
 function startupFcn(app)
 [X, Y] = meshgrid(0:app.xdim.Value/10,...
 0:1:app.ydim.Value/10);
 app.plane = complex(X,Y);
 app.pos.Data = [(app.xdim.Value/2-75), (app.ydim.Value/2), 1; ...
 (app.xdim.Value/2+75), (app.ydim.Value/2), -3];
 app.strx.Value = app.pos.Data(1,1);
 app.stry.Value = app.pos.Data(1,2);
 if app.first == 0
 app.omega = app.potflow(1)+app.potflow(2);
 Phi = real(app.omega);
 Phi(~isfinite(Phi)) = 0;
 contour(app.graph, Phi, 50)
 app.first = 1;

make two 2D matrices for x and y
coordinates of each point (scaling of 1/10)

combine these matrices in one complex 2D matrix

define location and strength of 2 sources

call function “potflow” to calculate
complex potential of each source
and superimpose the potentials. only use the velocity

potential (real part)

 [seedx, seedy] = meshgrid(app.strx.Value/10-app.strsz.Value/20
...
 :0.5:app.strx.Value/10+app.strsz.Value/20,...
 app.stry.Value/10-app.strsz.Value/20 ...
 :0.5:app.stry.Value/10+app.strsz.Value/20);
 [U, V] = gradient(Phi);
 streamline(app.graph, U, V, seedx, seedy)
 end

 xlim(app.graph, [0, app.xdim.Value/10]);
 ylim(app.graph, [0, app.ydim.Value/10]);
 app.graph.XTick = linspace(0, app.xdim.Value/10, 11);
 app.graph.YTick = linspace(0, app.ydim.Value/10, 11);
 app.graph.XTickLabel = linspace(0, app.xdim.Value, 11);
 app.graph.YTickLabel = linspace(0, app.ydim.Value, 11);
 axis(app.graph, 'manual')
 disableDefaultInteractivity(app.graph)
 app.checkphi.Value = 1;
 app.checkstream.Value = 1;
 end

function field = potflow(app, n)
 source = app.pos.Data(n,:);
 field = (1E6*source(3)/60)/(2*pi)*...
 log(app.plane-complex(source(1)/10, source(2)/10)); % One unit
 % in the plot = 0.01 mm, “discharge” is computed in [0.01 mm2/sec]
 end

Computation of complex potential for each
source, Qm is converted from µL/min to SI
units, scaling of 1/10 as above.

seeding for
streamlines

compute the local derivative for
finding the flow velocity/discharge
(this corresponds to the two final
equations in tutorial box 2)

The rest is cosmetics on the
plotting.

	Supplementary information
	Most critical sections of the numerical MATLAB tool

