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Supplementary Section A: Temperature sensitivity of the fluorescence

We performed the protocol of melting curve analysis (MCA) using both sample after PCR 
and 0.15 µM fluorescein. We found that the value of F from 0.15 µM fluorescein was about 
17% of the one from sample after PCR at the same temperature of 70ºC (Fig S 1). It could 
be helpful to recognize the negative partitions without affecting the result.

Fig S 1 MCA protocol showing the F difference between sample after PCR and fluorescein of 0.15 µM.
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Supplementary Section B: The workflow of the proposed algorithm.

The workflow of the proposed algorithm including 3 sections was shown in Fig S 2.

Fig S 2 The proposed algorithm was split into 3 sections. 1st section was consisted of image skew correction, 
well location correction as well as fluorescent amplitude extraction from each well. 2nd section was to generate 
a global light non-uniformity correction mask to remove the influence of non-uniform light distribution on 
dPCR results. 3rd section was to perform the image processing of 1st section and apply the light non-uniformity 
correction mask of 2nd section for the dPCR images after thermal cycling, constructing the well number 
occurrence as a function of fluorescence.



Supplementary Section C: Details of radial lens distortion correction algorithm.

A radial lens distortion is a common form of image distortion. Here, we take an image (Fig 
S 3A) of dPCR chip with obvious lens distortion using smartphone (Huawei P40) as an 
example to demonstrate our method. In the image, the pincushion distortion is radially 
symmetrical. The center of distortion is also the center of the image.

Firstly, we build a polar coordinate system and calculate polar coordinate of all pixels in 
the original image as shown in Fig S 3B. After that, corrected coordinates of these pixels 
are calculated as shown in Fig S 3C. The polar angle θ does not change after correction, 
the polar coordinate ri of pixel i is corrected based on distortion equation:

 , (1)
𝑠𝑖=

𝑟𝑖

1 + 𝑘𝑟2𝑖

where si is the corrected polar coordinate of pixel i, k is the radial lens distortion correction 
coefficient. Then, we build a rectangular coordinate system as shown in Fig S 3D. The 
corrected coordinates of pixels are converted into rectangular coordinates. Then, cubic 
spline interpolation algorithm is employed to calculate gray value of all pixels in corrected 
image. Finally, the corrected image is generated based on these pixels.

Fig S 3 Schematic illustration of radial lens distortion correction method. (A) Original dPCR image and polar 
coordinate system built on it. The origin (pole) locates at the center of image, the unit of polar axis is pixel. (B) 
Corrected image and corrected coordinates of all pixels. The boundaries of dPCR chip are marked with curve. 
(C) Corrected image and rectangular coordinate system. The origin locates in the upper left corner of the 
image.



In order to measure the performance of distortion correction and determine the optimal 
correction coefficient k, upper boundary of dPCR chip is chosen as a standard. Firstly, 5 
uniformly distributed wells located in the upper boundary are manually picked for quadratic 
polynomial fitting. Quadratic coefficient α could be obtained after fitting. Then, a series of 
k is used for distortion correction. When the absolute value of α is minimal, its 
corresponding k is considered optimal. The boundary curves before and after distortion 
correction is shown in Fig S 4.

Fig S 4 Boundary curve before and after lens distortion correction. The red, blue, yellow, and green curves are 
determined by quadratic polynomial fitting of up, down, left and right boundary wells.

Here, we compared quadratic coefficient α before and after distortion correction as shown 
in Table S 1. In theory, correction ratio should be very close for all 4 boundaries, however, 
due to the errors in optical path, they are different from each other. Since we choose upper 
boundary to measure the degree of distortion, the correction ratio of upper boundary is 
higher than of other 3 boundaries.
Table S 1 Quadratic coefficient α before and after correction.

Real angle (°) Upper boundary Lower boundary Left boundary Right boundary

Before correction −1.1747×10−5 1.2447×10−5 −1.5141×10−5 1.2725×10−5

After correction 4.8917×10−7 3.4444×10−6 −3.2275×10−6 2.2830×10−6

Correction ratio 95.84% 72.32% 78.68% 82.06%



Supplementary Section D: Details of boundary lines fitting algorithm

Fig S 5 Schematic diagram of boundary line fitting algorithm. (A) Filtered upper boundary wells. (B) Lines 
with a different number of support points. (C, D) Fitted upper boundary line using RANSAC method and direct 
least square method.

To fit boundary lines using boundary wells, including many wrongly detected/filtered ones, 
we proposed an algorithm based on random sample consensus known as RANSAC method. 
Here, we take upper boundary as an example to demonstrate it. The filtered upper boundary 
wells are shown in Fig S 5A.

We chose randomly five wells to fit a line using least square method. After that, the number 
of wells that were located on this line is counted. Such condition is judged by calculating 
vertical distance between the line and well: if the distance is lower than 5 pixels (which 
could be adjusted to adapt different cases), this well is regarded located on this line. 

Subsequently, the above two steps are repeated 2000 times. The lines with different support 
point number are shown in Fig S 5B. The corresponding line is considered optimal when 
the support point number is maximum. Finally, the upper boundary (Fig S 5C) is 
determined by line fitting of all wells located on this optimal line using the least square 
method. Compared with direct least square fitting (Fig S 5D), this algorithm could 
eliminate the effect of a few wrongly detected/filtered wells on boundary location.



Supplementary Section E: Details of projection transform

2D fluorescence image is a projection of a real dPCR chip. With the location of 4 corner 
points of the chip, the projection transformation matrix T between image and chip can be 
calculated. The wells on dPCR chip are pre-defined and precisely manufactured; therefore, 
the location of all wells on the chip could also be calculated based on T as shown in Fig S 
6A. This process is also schematically illustrated in Fig S 6B.

Fig S 6 Schematic illustration of well location correction method. (A) Schematic of location correction method. 
Four corner points (red) calculated by four boundary lines (green) were used as control points to locate all 
wells based on pre-defined chip structure. (B) Schematic illustration of 3D projection transform based well 
location correction method.

Compared with conventional 2D transform method, our method could perform better if the 
chip’s surface is not vertical to the optical path. The 2D and 3D correction methods are 
compared in Fig S 7. This issue will probably occur if there is a hardware’ assembly error, 
optical instrument’s fabrication error or human operation error. The bias between 
theoretical position and real position increases rapidly with the increase of z-axis skewed 
angle (α).

Fig S 7 Comparison of 2D and 3D correction method.



Supplementary Section F: dPCR images and corresponding histograms using dPCR 
chips with partition diameter of 50 µm

We prepared the master mix with a series cn values and used it to fill dPCR chips with 
partition diameter (well) of 50 µm corresponding to the λ values of 0.1, 0.2, 0.4, 0.7, and 
0.8. We captured the fluorescent images of the dPCR chips after thermal cycling and 
performed image processing based on the proposed algorithm and built up the histogram 
of occurrence as a function of F value. We determined the number of PW and NW based 
on the histogram and finally used a derived Poisson distribution Eq. (11) to obtain the λ 
values. The images and histograms were shown in Fig S 8, Fig S 9, and Fig S 10.

Fig S 8 Fluorescent signal analysis of an amplified dPCR chip with λ values of 0.1 and 0.2. The image (A) and 
extracted histogram (B) of the dPCR chips after PCR, corresponding to the λ value of 0.1. The image (C) and 
extracted histogram (D) of the dPCR chips after PCR, corresponding to the λ value of 0.2. We obtained the 
calculated λ values of 0.105 and 0.173, respectively, showing the relative error of 0.49% and 2.67%, 
respectively.



Fig S 9 Fluorescent signal analysis of an amplified dPCR chip with λ values of 0.4 and 0.7. The image (A) and 
extracted histogram (B) of the dPCR chips after PCR, corresponding to the λ value of 0.4. The image (C) and 
extracted histogram (D) of the dPCR chips after PCR, corresponding to the λ value of 0.7. We obtained the 
calculated λ values of 0.347 and 0.564, respectively, showing the relative error of 5.33% and 13.58%, 
respectively.

Fig S 10 Fluorescent signal analysis of an amplified dPCR chip with λ value of 0.8. The image (A) and extracted 
histogram (B) of the dPCR chips after PCR, corresponding to the λ value of 0.8. We obtained the calculated λ 
values of 0.676, showing the relative error of 12.41%.



Supplementary Section G: dPCR images and corresponding histograms using dPCR 
chips with partition diameter of 20 µm

We filled dPCR chips with partition diameter (well) of 20 µm corresponding to the λ value 
of 0.1. We then captured three blocks of the fluorescent images of the dPCR chips after 
thermal cycling and performed image processing based on the proposed algorithm and built 
up the histogram of occurrence as a function of F value. We determined the number of PW 
and NW based on the histogram and finally used a derived Poisson distribution Eq. (11) to 
obtain the λ values. The images and histograms were shown in Fig S 11.

Fig S 11 Fluorescent signal analysis of 3 blocks of a dPCR chip with partition diameter of 20 µm, 
corresponding to a λ value of 0.1. The images (A, B, C) and extracted histograms (D, E, F) of the dPCR chips 
demonstrated the calculated λ values of 0.06, 0.09 and 0.11, respectively.



Supplementary Section H: dPCR images of QuantStudio 3D dPCR chips

We used images from commercial dPCR chips (ThermoFisher Quantstudio 3D) after 
thermal cycling to validate the algorithm, corresponding to the original cn values of 2 and 
20 (Fig S 12).

Fig S 12 Fluorescent images from the commercial dPCR chips, corresponding to cn values of 2 (A) and 20 (B).


