Electronic Supplementary Information

Quinoline-tagged fluorescent organic probes for sensing of nitro-phenolic compounds and Zn²⁺ ion at ppb level⁺

Gouri Chakraborty, Prasenjit Das, and Sanjay K. Mandal*

Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India

*Corresponding Author's E-mail: sanjaymandal@iisermohali.ac.in

Table of Contents

Section	Description	Page No.
Section-1	Characterization of 1 and 2 : ¹ H and ¹³ C NMR spectra, HRMS spectra,	S3-S11
	FT-IR spectra, UV-Vis spectra, Solid-state emission spectra (Fig. S1 -	
	Fig. S16)	
Section-2	Fluorescence spectra of 1 and 2 in different solvents and in water	S12-S20
	with incremental addition of various NACs (Fig. S17 - Fig. S33)	
Section-3	Stern-Volmer plots for NACs in 1 and 2 (Fig. S34 - Fig. S39)	S21-S24
Section-4	Detection limit calculation for TNP in 1 and 2	S25-S26
	(Fig. S40 - Fig. S41, Tables S1-S2)	
Section-5	Energy minimized structures of 1 and 2 , HOMO-LUMO energy level	S27
	diagram of 1 , 2 and NACs (Fig. S42 – Fig. S43)	
Section-6	Hydrolytic and chemical stability confirmed by PXRD and FE-SEM	S28
	(Fig. S44 - Fig. S45)	
Section-7	Recyclability test (Fig. S46)	S29
	Comparison of K _{sv} and quenching efficiencies for nitro-phenol	S30
	derivatives in 1 and 2 (Table S3)	
	Literature survey (Table S4)	S30
	HOMO-LUMO energy values for 1, 2 and NACs (Table S5)	S31
	Average lifetime measurement values (Table S6)	S32

Fig. S2 ¹³C NMR spectrum of H₂bqbn in CDCl₃.

Fig. S3 HRMS spectrum of H₂bqbn.

Fig. S4 ¹H NMR spectrum of 1 in CDCl₃.

Fig. S5 ¹³C NMR spectrum of 1 in CDCl₃.

Fig. S6 HRMS spectrum of 1.

Fig. S7 ¹H NMR spectrum of H₂bqxn in CDCl₃.

Fig. S8 ¹³C NMR spectrum of H₂bqxn in CDCl₃.

Fig. S9 HRMS spectrum of H₂bqxn in CDCl₃.

Fig. S11 ¹³C NMR spectrum of 2 in CDCl₃.

Fig. S12 HRMS spectrum of 2.

Fig. S13 FTIR spectra of H₂bqbn (top) and 1 (bottom).

Fig. S14 FTIR spectra of H₂bqxn (top) and 2 (bottom).

Fig. S15 UV-vis spectra of **1** (a) and **2** (b) in CH_3OH and solid-state diffuse-reflectance spectra of **1** (c) and **2** (d).

Fig. S16 Solid-state emission spectra of 1 and 2 (λ_{exc} = 340 nm).

Section-2: Fluorescence spectra of 1 and 2 in different solvents and in water with incremental addition of various NACs

Fig. S17 Emission spectra of **1** (top) and **2** (bottom) (1 mg, 2 mL of different solvents (λ_{exc} = 340 nm).

Fig. S18 Emission spectra of **1** (left) and **2** (right) (32 μ M, THF) in presence of different volume fractions water (λ_{exc} = 340 nm).

Fig. S19 Excitation spectra of 1 (top) and 2 (bottom) dispersed in 2 mL of milli-Q water.

Fig. S20 Change in emission spectrum of 1 dispersed in water upon incremental addition of aqueous solution of 2,4-DNP (λ_{exc} = 340 nm).

Fig. S21 Change in emission spectrum of **1** dispersed in water upon incremental addition of aqueous solution of 4-NP (λ_{exc} = 340 nm).

Fig. S22 Change in emission spectrum of 1 dispersed in water upon incremental addition of aqueous solution of TNT (λ_{exc} = 340 nm).

Fig. S23 Change in emission spectrum of 1 dispersed in water upon incremental addition of aqueous solution of 2,6-DNT (λ_{exc} = 340 nm).

Fig. S24 Change in emission spectrum of 1 dispersed in water upon incremental addition of aqueous solution of 2,4-DNT (λ_{exc} = 340 nm).

Fig. S25 Change in emission spectrum of 1 dispersed in water upon incremental addition of aqueous solution of 1,3-DNB (λ_{exc} = 340 nm).

Fig. S26 Change in emission spectrum of 1 dispersed in water upon incremental addition of aqueous solution of NB (λ_{exc} = 340 nm).

Fig. S27 Change in emission spectrum of **2** dispersed in water upon incremental addition of aqueous solution of 2,4-DNP (λ_{exc} = 340 nm).

Fig. S28 Change in emission spectrum of **2** dispersed in water upon incremental addition of aqueous solution of 4-NP (λ_{exc} = 340 nm).

Fig. S29 Change in emission spectrum of 2 dispersed in water upon incremental addition of aqueous solution of TNT (λ_{exc} = 340 nm).

Fig. S30 Change in emission spectrum of 2 dispersed in water upon incremental addition of aqueous solution of 2,6-DNT (λ_{exc} = 340 nm).

Fig. S31 Change in emission spectrum of 2 dispersed in water upon incremental addition of aqueous solution of 2,4-DNT (λ_{exc} = 340 nm).

Fig. S32 Change in emission spectrum of 2 dispersed in water upon incremental addition of aqueous solution of 1,3-DNB (λ_{exc} = 340 nm).

Fig. S33 Change in emission spectrum of **2** dispersed in water upon incremental addition of aqueous solution of NB (λ_{exc} = 340 nm).

Section-3: Stern-Volmer plots for NACs in 1 and 2

Fig. S34 Stern-Volmer plots of different NACs in 1.

Fig. S35 Stern-Volmer plots of different NACs in 2.

Fig. S36 Fitted Stern-Volmer plots of (a) TNP, (b) 2,4-DNP, (c) 4-NP, (d) 2,6-DNT, (e) 1,3-DNB, (f) 2,4-DNT, (g) TNT and (h) NB in **1**.

Fig. S37 Fitted Stern-Volmer plots of (a) TNP, (b) 2,4-DNP, (c) 4-NP, (d) 2,4-DNT, (e) TNT, (f) 2,6-DNT, (g) 1,3-DNB and (h) NB in **2**.

Fig. S38 Stern-Volmer (SV) plot for TNP in **1**. The relative fluorescence intensity is linear with TNP concentration in the range of 0 - 0.025 mM, $I_0/I = 1 + 35540.43$ [TNP] (R² = 0.997).

Fig. S39 Stern-Volmer (SV) plot for TNP in **2**. The relative fluorescence intensity is linear with TNP concentration in the range of 0 - 0.025 mM, $I_0/I = 1 + 49763.27$ [TNP] (R² = 0.999).

Fig. S40 Determination of detection limit through fitting of the linear region of fluorescence intensity of **1** upon incremental addition of TNP to it at λ_{emi} = 429 nm (upon λ_{exc} = 340 nm) (R² = 0.984).

Blank Readings (1)	Emission Intensity		
Reading 1	1.662E7		
Reading 2	1.746E7		
Reading 3	1.643E7		
Reading 4	1.588E7		
Reading 5	1.701E7		
Reading 6	1.643E7		
Reading 7	1.603E7		
Reading 8	1.745E7		
Reading 9	1.735E7		
Reading 10	1.727E7		
Standard Deviation (σ)	592806		

Table S1: Calculation of Standard Deviation of 1.

Determination of Detection Limit of TNP in 1:

Detection limit was calculated using the following equation:

Detection limit = $3\sigma/m$

Where ' σ ' is the calculated standard deviation from ten blank measurements and 'm' is the slope obtained from the plot of fluorescence emission with increasing concentration of TNP.

Slope from Graph (m)	3.3962 X 10 ¹¹ M ⁻¹
Detection Limit ($3\sigma/m$)	5.236 μM (1.2 ppm)

Fig. S41 Determination of detection limit through fitting of the linear region of fluorescence intensity of **2** upon incremental addition of TNP to it at λ_{emi} = 427 nm (upon λ_{exc} = 340 nm) (R² = 0.961).

Blank Readings (2)	Emission Intensity		
Reading 1	1.130E7		
Reading 2	1.101E7		
Reading 3	1.121E7		
Reading 4	1.133E7		
Reading 5	1.111E7		
Reading 6	1.137E7		
Reading 7	1.110E7		
Reading 8	1.132E7		
Reading 9	1.117E7		
Reading 10	1.101E7		
Standard Deviation (σ)	134281.87		

|--|

Determination of Detection Limit of TNP in 2:

Detection limit was calculated using the following equation:

Detection limit = $3\sigma/m$

Where ' σ ' is the calculated standard deviation from ten blank measurements and 'm' is the slope obtained from the plot of fluorescence emission with increasing concentration of TNP.

Slope from Graph (m)	2.8381 X 10 ¹¹ M ⁻¹
Detection Limit ($3\sigma/m$)	1.41 μM (0.3 ppm)

Section-5: Energy minimized structures and HOMO-LUMO energy level diagrams of 1, 2 and NACs

Fig. S42 Energy minimized structures of **1** (a) and **2** (b). (Color code: carbon in black, nitrogen in blue and hydrogen in sky blue).

Fig. S43 HOMO and LUMO energy level diagrams of 1 (top), 2 (bottom) and the electrondeficient NACs.

Fig. S44 PXRD profiles of **1** (left) and **2** (right) before and after immersing in water and aqueous TNP solution.

Fig. 45 FE-SEM images of **1** (i, ii) and **2** (iii, iv) before and after immersing in aqueous solution of TNP (1 mM), respectively.

Section-7: Recyclability test

Fig. S46 Bar diagrams depicting the recyclability of (a) **1** and (b) **2** over five cycles after quenching experiment with TNP (dark red bars = initial intensity, blue bars = intensity after addition of 200 μ L TNP (1 mM).

Table S3. Comparison of K_{SV} values and quenching efficiencies for nitro-phenol derivatives in 1 and 2.

Nitro- analyte	K _{sv} value in 1	K _{sv} value in 2	Quenching efficiency (%) in 1	Quenching efficiency (%) in 2
TNP	3.55 X 10 ⁴	4.97 X 10 ⁴	87	91
2,4-DNP	3.14 X 10 ⁴	2.49 X 10 ⁴	76	83
4-NP	1.90 X 10 ⁴	2.02 X 10 ⁴	71	74

Table S4. Literature survey on detection limit, K_{sv} and K_{q} values for TNP.

Organic Probe	K _{sv} (M ⁻¹)	К _q М ⁻¹ s ⁻¹	Detection Limit	Solvent Medium	Reference
bqbpbn (1) bqbpxn (2)	3.55 x 10 ⁴ 4.97 x 10 ⁴	6.56 x 10 ¹² 9.84 x 10 ¹²	5.17 x 10 ⁻⁶ M (1.2 ppm) 1.37 x 10 ⁻⁶ M (0.3 ppm)	H ₂ O H ₂ O	This work This work
banthbpbn bnaphbpbn	5.78 x 10 ⁴ 3.26 x 10 ⁴	5.58 x 10 ¹² 4.68 x 10 ¹²	0.6 ppm 1.6 ppm	H ₂ O H ₂ O	ACS Omega, 2018, 3 , 3248–3256
DQB	NA	NA	1.5 x 10 ⁻⁶ M (0.34 ppm)	CH ₃ CN:H ₂ O (1:1, v/v)	New J. Chem., 2018, 42 , 8408-8414
F1 F2	3.94 x 10 ⁴ 2.10 x 10 ⁴	NA	5.7 x 10 ⁻⁷ M (0.13 ppm) 9.3 x 10 ⁻⁷ M (0.21 ppm)	H ₂ O H ₂ O	Chem. Commun., 2017, 53 , 10524-10527
1-(3- chloropropyl)-3-((7- hydroxy-2-oxo-2H- chromen-4-yl)methyl)- 1Hbenzo[d] imidazol-3-ium chloride	1.58 x 10 ⁴	NA	2.08 x 10 ⁻⁷ M	H ₂ O	ChemistrySelect, 2016, 1 , 1756-1762
DBSA-PANI	16.8 x 10 ⁶	NA	1 x 10 ⁻⁶ M	NMP	<i>ChemistrySelect,</i> 2018, 3 , 2655-2664
Compound 1	3.43 x 10 ³	NA	15.2 x 10 ⁻⁶ M (3.48 ppm)	H ₂ O	<i>Cryst. Growth Des.,</i> 2015, 15 , 3493-3497
PA PF	1.77 x 10 ⁴ 3.90 x 10 ⁴	NA NA	NA NA	H ₂ O	Sensors and Actuators, B 2014, 203 , 612-620
PrPr	10 ⁵	NA	13 μM (2.98 ppm)	CH₃CN	<i>CrystEnggComm</i> , 2017, 19 , 6703-6710
R1	4.37 x 10 ⁴	NA	0.0032 μM (0.73 ppb)	DMSO:H ₂ O (1:4)	ACS Omega, 2017, 2 , 1583–1593
Nph-An	7.0 x 10 ⁴	NA	4.7 x 10 ⁻⁷ M (0.11 ppm)	THF:H ₂ O (1:9)	Sensors and Actuators, B 2016, 230 , 746-752
Amphiphile 1	NA	NA	1.55 x 10 ⁻⁷ M (0.035 ppm)	EtOH:H ₂ O (2:3)	ACS Omega, 2016, 1 , 371–377
DNSA-SQ	NA	NA	7 x 10 ⁻⁸ M (0.016 ppm)	CH ₃ CN:H ₂ O (9:1)	Chem. Commun., 2013, 49 , 4764-4766
P3 P4	2.69 x 10 ⁴ 8.08 x 10 ⁴	NA NA	31-70 ppm	CHCl ₃	J. Mater. Chem. C, 2017, 5, 11100-11110
L	NA	NA	4.3 x 10 ⁻⁷ M (0.098 ppm)	DMF	Chem. Commun., 2011, 47 , 4505-4507
Cage 4	2.2 x 10 ⁵	NA	6.4 ppb	DCM	Chem. Commun., 2014, 50 , 15788-15791

Table S5. HOMO and LUMO energies calculated for **1**, **2** and NACs using DFT with basis set B3LYP/6- 31G+(dp) and Gaussian09 program.

	HOMO (eV)	LUMO (eV)	Band Gap (eV)
1	-6.0360	-1.7140	4.322
2	-5.9492	-1.9631	3.9861
TNP	-8.2374	-3.8978	4.3396
2,4-DNP	-7.6644	-2.8202	4.8442
4-NP	-6.9207	-2.2213	4.6994
TNT	-8.4592	-3.4926	4.9666
2,4-DNT	-7.7645	-3.2174	4.5471
2,6-DNT	-7.6448	-3.2877	4.3571
1,3-DNB	-7.9855	-3.4311	4.5544
NB	-7.5912	-2.4283	5.1629

	1	1 + 20 μL	1 + 40 μL	1 + 200 μL	2	2 + 20 μL	2 + 40 μL	2 + 200 μL
		TNP	TNP	TNP		TNP	TNP	TNP
χ^2 value	1.10	1.18	1.16	1.14	1.17	1.19	1.10	1.13
τ ₁ (ns)	0.34	0.37	0.28	0.20	1.33	1.25	1.29	1.19
α ₁	0.392	0.416	0.386	0.346	0.245	0.135	0.163	0.278
τ ₂ (ns)	1.72	1.96	1.81	1.50	0.15	0.09	0.113	0.093
α ₂	0.493	0.498	0.512	0.499	0.663	0.801	0.772	0.671
τ ₃ (ns)	9.07	9.96	7.63	5.16	7.52	6.72	6.75	1.19
a3	0.114	0.085	0.100	0.153	0.091	0.063	0.064	0.278
Average τ	5.41	5.28	4.19	3.02	5.06	4.60	4.38	3.29
(ns)								

 Table S6. Average lifetimes of 1 and 2 before and after TNP addition.