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Fig. S1 High-angle annular dark field (HAADF) and scanning transmission electron microscopy—
energy-dispersive spectroscopy (STEM-EDS) images, respectively, of nanosheets of (a,b) a-
Ni(OH). and (c, d) AI**-substituted o-Ni(OH).. All samples contain uniform Ni and O distribution
and a layered structure; (d) indicates uniform Al distribution. Lacey carbon support film outlined
in dashed lines in (c, d).
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Fig. S2 a-Ni(OH). sheet thickness analysis: () HAADF image showing layers and region (green
box inset) from which an electron energy—loss spectrum was acquired; (b) EELS absolute
thickness map calculated from EELS spectrum; (c) bar graph of thickness mean and standard
deviation taken from the regions (1-8) demarcated in the EELS thickness map in (b).

Table S1 Mean thickness and standard deviation of layers in Fig. S2. Layer thickness is calculated
by taking the difference between subsequent layers.

Region Total Layer Standard Layer Number of
Thickness (nm) | Deviation (nm) | thickness (nm) layers
1 1.87 0.43 — 6
2 2.16 0.41 0.29 7
3 2.37 0.41 0.21 8
4 2.54 0.42 0.17 9
5 2.80 0.46 0.26 10
6 3.11 0.46 0.31 11
7 3.90 0.53 0.79 13
8 4.76 0.60 0.86 15
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Fig. S3 Comparison of plots of incremental pore volume versus average pore width determined
using Barrett-Joyner—Halenda analysis of the desorption branch of isotherms obtained for
nanosheets of o-Ni(OH)2, aluminum-substituted (Ni-Aliy), cobalt-substituted (Ni-Co1o),
manganese-substituted (Ni-Mnyo), and zinc-substituted (Ni-Znzo).
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Fig. S4 Raman spectra of nanosheets of a-Ni(OH)2, aluminum-substituted (Ni-Ali), cobalt-
substituted (Ni-Co10), manganese-substituted (Ni-Mn1o), and zinc-substituted (Ni-Znio): (a) full
spectrum from 50 cm* to 4000 cm; and (b) expanded spectral region between 2750 cm to
4000 cmL.
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Fig. S5 Raman spectrum of unsubstituted a-Ni(OH). nanosheets from 50 cm™ to 4000 cm™;
spectrum obtained using a laser excitation frequency of 514 nm.
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Table S2 Raman peaks for microwave-synthesized unsubstituted o-Ni(OH). nanosheets within
the 50 cm to 4000 cm™ region, peak assignments, experimental wavenumbers and reported
wavenumbers from the literature.

Experimental Reported
. Peak
Signal Source Assi wavenumber wavenumber
ssignment 0 )
(cm™) (cm™)
4601
v(Eq) 458 172
4951
6-Ni(OH); V(As) - 554 2
lattice
v(—OH bend) 1625 16201
v(2" order —OH bend) 2914 ~29001
v(~OH stretch) 3657 36471
vi(NO3) 986 997 ¢
Vz(NO37) 821 8161
Nickel-nitrate v3(NOz) 1283 12917
precursor V4(N037) 721 719 1
vi(free NO3) 1042 10471
vs(free NO3) 1352 13501
v(C-C) 861 864 3
Ethylene glycol 1(C-Hy) 1254 1260°
precursor 8(C—Hy) 1464 14593
v(C-H) 2854 28753
v(C-N) 1173 11774
Urea _ 5
precursor v2(OCNY) 636 630-632
v3(OCNY) 2181 2160-2180 56
Carbonate v(C-0) 1069 1066 "®
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Fig. S6 (a) Plots of cell voltage versus test time showing formation cycling of Ni—-Zn sponge cells
at a mass-normalized current of 84.4 mA g tacive between 1.3-2.0 V vs Zn; the cells are equipped
with powder-composite cathodes containing nanosheets of unsubstituted a-Ni(OH)2, aluminum-
substituted (Ni-Ali), cobalt-substituted (Ni-Co10), manganese-substituted (Ni-Mnaig), or zinc-
substituted (Ni-Zn1o). The cells are charged up to 2.0 V or until reaching a theoretical capacity of
422 mAh g Lacive; * indicates a short power outage; comparison of the cell voltage versus specific
capacity plots for the 5™ cycle (b) and 35" cycle (c) charging steps.
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Fig. S7 (a) Scanning electron micrograph of hydrothermally treated o-Ni(OH). nanosheets (a-
Ni(OH)2-AHT); (b) comparison of 5 cycle differential capacity (0Q/6V) plots of a-Ni(OH).
nanosheets, a-Ni(OH).-AHT nanosheets, and commercial f-Ni(OH). (Alfa); (c) comparison of 51"
cycle voltage vs. specific capacity of a-Ni(OH)2 nanosheets, a-Ni(OH)2-AHT nanosheets, and
commercial B-Ni(OH)2 (Alfa); and (d) comparison of specific discharge capacity vs. cycle number
of a-Ni(OH). nanosheets, a-Ni(OH)2-AHT nanosheets, and commercial B-Ni(OH)2 (Alfa); cells
were charged and discharged at a mass-normalized current rate of 84.4 mA g Lacive between 1.3

and 2.0 V.
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