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Figure S1. Transfer length
characterization of two NbSe, films
on paper to estimate the sheet
resistance.



Figure S2: Scanning electron microscopy (SEM) images acquired on the NbSe, powder source
material with different magnifications.
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Figure S3: More scanning electron microscopy (SEM) images, at different magnifications, acquired on
the NbSe, film on paper shown in Figure 1 of the main text. The overall film is formed by crushed
NbSe, flakes that form a compact layer but in some of the gaps between paper fibers one can still

observe loose NbSe, flakes.
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Figure S5: lllustration of the NbSe, percolative film as a network, (left) random network of
superconducting particles, (center) random resistance network derived from the space model, (right)
matrix form of the network used to solve the unknown voltages and the currents flowing through
each resistor.
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Figure S6: Mean total resistance of random resistors networks (size 120x120) as a function of the
temperature with a uniformly distributed critical temperature between 1 K and 7 K (blue curve) and
for a fixed critical temperature of 7 K (red). The colored bands correspond to a variation of 1
standard deviation from the mean curves.
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Figure S7: Total resistance of random resistors networks (size 120x120) as a function of the
temperature and for different amount of superconducting elements in the film. Going from p=0
corresponding to a network entirely made of superconducting elements, to p=1 where the network is
fully insulating. The network used in Figure 4 of the main text has p=0.65.
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Figure S8: a) Semilogarithmic representation of the total resistance of random resistors networks
(size 120x120, p = 0.65) as a function of the temperature calculated for different values of the aspect
ratio L/W (where L is the channel length and W the width, see inset for an example with L/W = 0.6).
b) Resistance versus temperature curves for a square channel (L/W = 1, top) and for a small aspect
ratio channel (L/W = 0.01, bottom).



