Supplementary Information

Room-temperature ppb-level trimethylamine gas sensors functionalized with citric acid-doped polyvinyl acetate nanofibrous mats

Aditya Rianjanua,b,*, Rizky Aflahac, Nur Istiqomah Khamidya, Mitra Djamald, Kuwat Triyanac,*, and Hutomo Suryo Wasistoe,*

a Department of Materials Engineering, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung, Lampung 35365, Indonesia
b Research and Innovation Center for Advanced Materials, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung, Lampung 35365, Indonesia
c Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta 55281, Indonesia
d Department of Physics, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung, Lampung 35365, Indonesia
e PT Nanosense Instrument Indonesia, Umbulharjo, Yogyakarta 55167, Indonesia

*Corresponding authors.
E-mails: aditya.rianjanu@mt.itera.ac.id (A.R.); triyana@ugm.ac.id (K.T.); h.wasisto@nanosense-id.com (H.S.W.)

1. Dynamic responses of PVAc/CA nanofiber sensors

\begin{figure}
\centering
\includegraphics[width=\textwidth]{FigureS1.png}
\caption{Single-cycle dynamic responses of three quartz crystal microbalance (QCM)-based gas sensors functionalized with different citric acid-doped polyvinyl acetate nanofibrous (PVAc/CA) mats: a PVAc/CA2, b PVAc/CA6, and c PVAc/CA8. Trimethylamine (TMA) vapors with a concentration of 10 ppm were used to investigate the response and recovery times of all nanofiber sensors.}
\end{figure}
2. Normalized sensor sensitivity

Figure S2 Normalized sensitivity values of four PVAc/CA nanofiber-coated QCM sensors (i.e., PVAc/CA2 – PVAc/CA8 sensors). The normalization process was conducted to investigate the nanofiber mass deposition effect on the sensor sensitivity.