Supporting Information:

Out of stoichiometry CuCrO₂ films as promising p-type TCO for transparent electronics

Lorenzo Bottiglieri^{*} ^a, João Resende^b, Matthieu Weber^a, Odette Chaix-Pluchery^a, Carmen Jiménez^a, Jean-Luc Deschanvres^a

- a. Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, 38000 Grenoble, France
- b. AlmaScience, Campus da Caparica, 2829-516 Caparica, Portugal

Email: Lorenzo.bottiglieri@grenoble-inp.fr

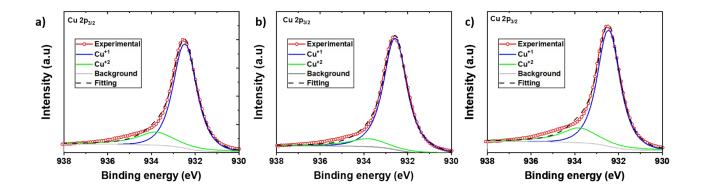


Figure S1. Cu $2p_{3/2}$ experimental peak and its fitting for a) Cu-rich CuCrO₂:59%, b) Cu-rich CuCrO₂:65% and c) Cu₂O+CuCrO₂:73%.

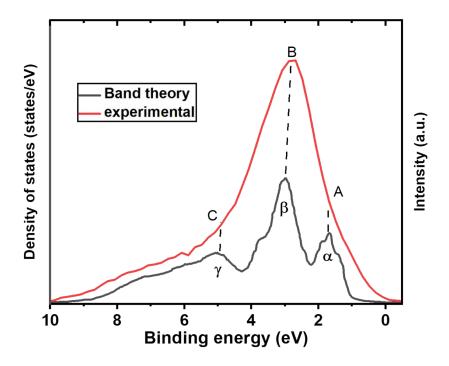


Figure S2. Comparison between the theoretical density of states of $CuCrO_2$, adapted by Yokobori et al¹. and the valence band spectra of Cu-rich $CuCrO_2$ with Cu/(Cu+Cr)=65%. The energy zero was set to the Fermi level.

1. Yokobori, T. *et al.* Electronic structure of the hole-doped delafossite oxides CuCr_{1-x}Mg_xO₂. *Phys. Rev. B - Condens. Matter Mater. Phys.* **87**, (2013).