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Additional tables and equations

Table 1 FWHM analysis of p-doped Zn-Co spinels.

substrate peak spinel (222) / 2θ FWHM / 2θ τ∗ / nm
sapphire 38.0 deg 0.25 deg 31.8
rutile 38.092 deg 0.25 deg 32
Ti-mesh (native TiO2) 38.092 deg 0.28 deg 28.6
Al:ZnO (wurtzite) 38.3 deg 0.39 deg 21

*Scherrer analysis.

Table 2 Electrochemical impedance spectra of electrolysis cell.

WE CE Rele. / Ω cm−2 Rme. / Ω cm−2 C / µF cm−2

Pt Pt 1.8 16 27
Zn1.2Co1.8O3.5/Ti-mesh* Ni 2.0 16 21.3

* Including Ti-corrosion effects. ** WE = working electrode, CE = counter electrode, ele. = electrolyte, me. =
membrane.

Table 3 Statistical data.

Anode η∗
av. / V ηav. / V ηmin. / V standard deviation / mV

Zn1.2Co1.8O3.5/Ti-mesh 0.35 0.363 0.345 ±6
Zn1.2Co1.8O3.5/Al:ZnO 0.41 0.425 0.39 ±7

* at 10 mA cm−2

Appendix: Scherrer analysis
The domain size (τ) is calculated using the Scherrer formula:

τ =
K ·λ

β · cosθ
(1)

with the excitation length λ = 0.15406 nm (Cu Kα1), the shape factor K = 0.89 (spherical), the Bragg angle θ

(deg) of the peak and the (radial) peak full width (at half maximum, FWHM, deg, Figure S7).
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Fig. S1 Samples used for OER characterization: blank Ti-mesh, Ti-mesh covered with Zn1.2Co1.8O3.5 and patterned
substrate on sapphire (0001) with Al:ZnO as conducting layer buried under Zn1.2Co1.8O3.5 and Au, respectively.

Fig. S2 SEM images of the Ti-mesh: We show the geometric factor of 0.75 (projected versus geometric area).
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Fig. S3 Al:ZnO as conductive substrate for OER: high-quality Al:ZnO is co-deposited prior the Zn-Co-O spinel on
sapphire (0001). To protect the Al:ZnO from dissolution in alkaline media, the conducting oxide is covered in the center
with spinel Zn1.2Co1.8O3.5 (active area) and, concomitantly, on the edges with Au (schematic in (a)). In (b), the actual
electrolysis cell used for characterization is depicted.
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Fig. S4 Conductivity of Al:ZnO on sapphire (0001): Prior the catalytic Zn1.2Co1.8O3.5, 200 nm Al:ZnO are deposited
(doping at approx. 2% Al) resulting in a conductivity of 1100 S cm−1 and a sheet resistance of 45.4 Ω per square.
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Fig. S5 Ti-mesh calibration: X-ray diffraction patterns of Ti-mesh with and without Zn1.2Co1.8O3.5.
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Fig. S6 Detailed diffraction patterns of Zn1.2Co1.8O3.5: (222), (333) and (444) pattern on sapphire and Al:ZnO.
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Fig. S7 Comparison of the FWHM/Scherrer analysis: Diffraction peaks of the (222) Zn-Co-O spinel pattern (semi-log
scale) on following substrates: TiO2 (rutile, tetragonal) and Al2O3 (sapphire 0001, hexagonal) as the reference substrates;
Ti-mesh with native TiO2 and Al:ZnO (on sapphire 0001, hexagonal) used as electrocatalytic anodes. On the bottom.
the spinel we include the structure of the Zn-Co-O system and the corresponding full widths according to the diffraction
pattern. From that we calculated the average domain size τ according to equation 1 summarized in Table 1.
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Fig. S8 Structure of the Ti-mesh by bright field STEM: (a) the overview displays the homogeneous thick Zn1.2Co1.8O3.5

on top of the TiO2 covered Ti-mesh. (b) Most of the columnar grains reach from the TiO2 to the surface with diameters in
the region from 10-40 nm.
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Fig. S9 TEM lattice image of the Zn1.2Co1.8O3.5 layer: The lattice fringes of the marked grain and its neighboring
grains are well visible in the right-hand high-resolution phase contrast image proving the good crystal quality of the active
Zn1.2Co1.8O3.5 layer. The average domain size τ corresponds to the XRD Scherrer analysis (Figure S7 and Table S1).

Journal Name, [year], [vol.],1–24 | 11



Fig. S10 X-ray reflection measurement on Hall-specimen: Zn1.2Co1.8O3.5 grown on sapphire (0001) for the van-der-
Pauw Hall specimen yielding 165±3 nm.
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Fig. S11 Electrochemical characterization of Ti/Au (10 nm) / Zn1.2Co1.8O3.5. (a) Cyclic voltammetry and (b) chronoam-
perometry for 50 h to test the stability at 10 mA cm−2.
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Fig. S12 Ti-corrosion: Cyclic voltammogram reveals an increase of the anodic current after cycling at anodic potentials.
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Fig. S13 Detailed Tafel analysis: Extraction of Tafel slopes in the linear regime of the semilogarithmic Tafel-plots.
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Fig. S14 Electrochemical impedance spectroscopy: The electrochemical cell constants (Relectrolyte, Rmembrane, capaci-
tance) are presented in Table 2.
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Fig. S15 Linear sweep voltammogram exceeding 500 mA cm−2.

Fig. S16 Current density versus scan rate to determine the electrochemical surface area (ECSA) in organic electrolyte
(acetonitrile, 0.1 M TBA-PF6). The measurement was performed at the equilibrium potential of the O2 evolution at +1 V
vs. Ag/AgCl (quasi) reference elctrode.
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Fig. S17 Schematic of the electrochemical H-cell for conducting the electrocatalytic splitting of water.
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Fig. S18 Statistical evaluation: Different experiments on electrocatalytic anodes: Zn1.2Co1.8O3.5 on Ti-mesh and
Al:ZnO, respectively.
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Fig. S19 XPS survey before/after electrolysis of Zn1.2Co1.8O3.5 on titanium: surface composition (Zn:Co at ≈ 0.65)
remains similar after electrolysis of O2 for 50 h.
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Fig. S20 Summary of Hall measurement: A LakeShore 8400 Hall measurement system was used to measure the van
der Pauw-type specimen of Zn1.2Co1.8O3.5 grown on sapphire (0001) (here shown at 300K).

Fig. S21 Ohmic Check: Contacting Zn1.2Co1.8O3.5 in the van der Pauw geometry shows ohmic linear behavior.
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Fig. S22 Resistivity at 300K: 8-fold probing in the van der Pauw geometry to obtain the isotropic resistivity of the 165 nm
thick Zn1.2Co1.8O3.5 on sapphire.
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Fig. S23 AC-Hall measurement at 300K: the AC-Hall method developed by LakeShore (8400 HMS Series) allows
to induce an AC-magnetic sinusoidal sweep of the magnetic field (amplitude maximum at 0.91 T, average at 0.6251 T,
frequency 100 mHz), while the electric parameters (DC-current, voltage) are measured in DC-mode. Using this, the
sensitivity is increased below 0.7 ·10−6 V (high-sensitivity Hall voltage probing). Details of the measurements at 300K of
the 165 nm thick Zn1.2Co1.8O3.5 on sapphire are presented.
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Fig. S24 Gas-chromatogram (He) of the anode headspace: Before and after composition of the headspace showing
the rise of anodically produced O2 gas.
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