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Experimental Procedures  

 

Synthesis of ABTC:3,3’,5,5’ Azobenzene-tetra-carboxylic acid (H4ABTC): 

The synthesis of H4ABTC followed previously reported procedures to synthesize this ligand with slight 

modification.1-4 To a 100 mL flask was added 5-nitroisophthalic acid (2 g, 9.4 mmol), sodium hydroxide 

(6.5 g, 160 mmol), and DI water (25 mL). To a separate 100 ml flask was added D-glucose (11.5 g, 64 mmol) 

and DI water (25 mL). Both flasks were heated to 70 °C and stirred until both solutions were clear. The 

solutions were combined and stirred for 12 hours at 70 °C under bubbling air into the solution. Note: 

bubbling must be gentle. The dark brown solution was cooled on an ice bath. The yellow-brown solids 

could be collected by centrifugation. The solids were dissolved in excess water and acidified with conc. 

Hydrochloric acid in an ice bath. The product was isolated by centrifugation, washed once with acetone, 

and dried in air. Yield: 83%. 

 

Synthesis of PCN-250 clusters: 

The mixed metal clusters were synthesized according to previously reported procedures with some slight 

modifications.2, 5 To a 250 mL beaker was added sodium acetate (21.0580 g, 256.70 mmol) and water (20 

mL). This was dissolved by sonication. To a second 250ml beaker was added Fe(NO3)3 x 9H2O (4.0701 g, 

16.83 mmol) and M(NO3)2 x X H2O salt (M = Co, Ni, Zn, or Mn, 51.89 mmol). This was dissolved in water 

(20 mL) via sonication. The two beakers were combined and stirred at room temperature for 12 hours. 

The precipitate was filtered in water with minimal washings before being air-dried to yield the pure cluster 

product. The preformed clusters utilized in this study were Fe3, Fe/Zn, Fe/Mn, Fe/Ni, and Fe/Co. Other 

combinations were attempted, including In3, Al3, Sc3, and (Al, In, Sc)/(Fe, Mn, Ni, Co, Zn) cluster pre-

synthesis, but no other cluster types can be performed successfully as determined by metal content by 

ICP and 1HNMR.   
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Synthesis of PCN-250 MOF:  

To a 20 mL pyrex vial was added H4ABTC (180 mg) and DMF (10 mL). To a second Pyrex vial was added a 

metal nitrate salt or preformed cluster (540 mg), DMF (2 mL), and glacial Acetic Acid (6mL). The two vials 

were sonicated until the contents had dissolved. After dissolution, the contents of the vials were 

combined, filtered, and immediately placed into a 150 °C oven. The MOFs were collected after 48 hours. 

The products were washed 3x with fresh DMF and allowed to sit in fresh DMF for 24 hours after washing. 

The samples were then transferred into a soxhlet extractor for two days with Methanol extraction to yield 

the pure microporous MOF. The samples were dried in air before analysis. Yield: 53% 

Generation of hierarchical porosity through decarboxylation:  

Generation of hierarchically porous samples occurred through two methods. In the first method, small 

quantities of the samples, up to 100 mg, were loaded in a BET tube and were heated on the activation 

port of Micromeritics ASAP 2420 for 12 hours at 185 °C. In order to generate a significant quantity of 

mesopores in these structures for a larger scale sample (up to 1 g), continual thermal activation under 

vacuum at 185 °C was utilized on a Schlenk line for 100 hours.   

Analysis by Mossbauer sample preparations:  

The Iron-containing samples were analyzed via 57Fe Mössbauer spectroscopy. The thermally activated 

samples were activated under vacuum and heat on a schlenk line. To ensure no contamination from air, 

all samples were sealed on the schlenk line and transferred to a glovebox, and sealed in e-icosane for 

Mossbauer sample preparation. Samples were then transferred immediately into a liquid nitrogen bath 

for storage after removal from the inert atmosphere once the E-icosane shielding the sample had properly 

set.  

Analysis by LC-MS sample preparations:  

Small samples of the thermally treated MOFs were decomposed via 1 mL ammonium hydroxide solution 

(250ul ammonium hydroxide in 1ml water) at 85 °C for 12 hours. The orange solutions were then filtered 
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and analyzed by LC-MS after dilution with water. Note: ABTC as a free ligand is highly insoluble in most 

solvents. In order to maintain solubility, the ligand must be in a basic aqueous solution for analysis.  

Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) sample preparation: 

Conc. HNO3 (500 μL) was used to dissolve the sample in a vial at 80 °C overnight. A dilution of this was 

made by first taking 200 μL of this solution and diluting it to 10ml. Then a second dilution was made, taking 

100μL from this solution and diluting to 10ml. 

Instrumentation 

Powder X-ray diffraction (PXRD) was carried out with a Bruker D8-Focus Bragg-Brentano X-ray Powder 
Diffractometer equipped with a Cu sealed tube (λ = 1.54178 Å) at 40 kV and 40 mA. 
 
Scanning Electron Microscopy (SEM) measurements were carried out on JEOL JSM-7500F. JEOL JSM-7500F 
is an ultra-high-resolution field emission scanning electron microscope (FE-SEM) equipped with a high 
brightness conical FE gun and a low aberration conical objective lens. 
 
Thermal Gravimetric Analysis-Mass Spectrometry (TGA-MS) was performed using a Mettler-Toledo 
TGA/DSC STARe-1 system which was equipped with a GC100 gas controller. The MS data were collected 
using a ThermoStar Gas Analyzer. The system was sealed from the outside environment during analysis 
and collected with the carrier gas Ar.  
 
N2, CO2, and CH4 sorption measurements were conducted using a Micromeritics ASAP 2020 and 2420 
system. The thermal activation before analysis profiles was 185 °C at 10 hours under vacuum for all 
samples. 
 
Gas Chromatography-Mass Spectrometry (GC-MS) was performed using a Thermo Scientific DSQ II GCMS. 

An ESI analysis was used.  

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) -Calibration standards were prepared from 

certified reference standards from RICCA Chemical Company. Samples were further analyzed with a 

PerkinElmer NexION 300D ICP mass spectrometer. The resulting calibration curves have a minimum R2 = 

0.9999. Additionally, to maintain accuracy, quality control samples from certified reference standards and 

internal standards were utilized. The individual results of the triplicate samples were averaged to 

determine the metal concentration. 

57Fe Mössbauer measurements: Samples were transferred into a cup designed to fit the Mössbauer 

Spectrometer under an inert atmosphere and were rapidly frozen in liquid N2 in an anaerobic refrigerated 

glove box. Mössbauer data was then collected at 5K and 150K on an MS4 WRC or LHe6T spectrometer 

(SEE Co., Edina, MN). The data was analyzed and simulated using WMOSS software 

(http://www.wmoss.org/). The instrument was calibrated at room temperature with α-iron foil. 

For X-ray absorption spectroscopy (XAS), the sample was packed inside the sample holder under a 

constant flow of high purity helium. Helium flow was used during thermal studies as well. The XAS studies 

were conducted at the Advanced Photon Source at Argonne National Laboratory under the direction of 

Dr. Di-Jia Liu.  

 

http://www.wmoss.org/
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Discussion of Heat of Adsorption (HOA) Calculations (Figures S43-S50) 

Heat of adsorptions for both methane and carbon dioxide were calculated based upon the Langmuir8-10 

fits of the isotherm data at 195 K, 273 K, and 298 K. Langmuir fits for the three data sets were conducted 

using the OriginPro 8.5 software by taking the original isotherm data points and utilizing the non-linear 

curve fit to the single-site Langmuir equation: 

𝑄 =
𝑞𝑠𝑎𝑡(𝐾 ∗ 𝑃𝑛)

1 + 𝐾 ∗ 𝑃𝑛
 

P, the pressure (kPa) was set to be the independent variable in the fit, while Q, the quantity adsorbed 

(cm3/g STP), was set as the dependent variable. The three parameters, qsat, K, and n, were varied as part 

of the fit. 

An example of the resulting parameters for the six isotherms and their corresponding error values are 

shown in the table below:  

 

Table HOA1: Parameter set for PCN-250-Fe/Zn mesoprorous 

Isotherm qsat K n R2 Chi2 

CH4 195 K 200.82171 (0.67129) 0.02032 (1.46514*10-4) 1.03153 (0.00357) 0.99997 0.0423 

CH4 273 K 165.0629 (0.82983) 0.00234 (7.40186 *10-6) 0.99768 
(6.83626*10-4) 

0.99999 5.0693*10-5 

CH4 298 K 200.82477(3.33589) 0.00115(1.54962*10-5) 0.99143(0.00109) 0.99999 5.2043*10-5 

CO2 195 K 311.46515(2.3145) 0.31957 (0.01183) 0.93866 (0.00284) 0.99944 0.0909 

CO2 273 K 308.40838(8.57426) 0.0061 (8.09398 *10-5) 1.02259 (0.0107) 0.99981 0.2461 

CO2 298 K 465.60928 (14.78156) 0.00254 (5.6267 *10-5) 0.94409 (0.00356) 0.99998 0.0101 

 

Each of these equations was then used to calculate adsorption values over a wider pressure range as 

compared to the experimental data in Microsoft Excel( [=(($B$5*$B$6*L1^($B$7))/(1+$B$6*L1^($B$7)))] 

where values for q, b, and v are entered into B5, B6, and B7 respectively, and pressure ranges are entered 

into column L). The calculated data points for each gas at the three temperatures were then compared to 

find pressure values with matching adsorption quantities through the use of Excel’s Match function ( 

[MATCH(N210,R:R,0)] as an example. In this, the match function within Excel is finding the location within 

the row from the 273 K data (Column R) where the value in the row (the quantity adsorbed) matches the 

quantity adsorbed value in the given row the 298 K data (N210))). For this data, each isotherm was varied 

only by 0.1 mbar, providing a high degree of data overlap for matching. 

In one column, the Match function was utilized to find the quantity adsorbed data row from the 298 K 

isotherm that matched a given row for the 195 K isotherm quantity adsorbed. In another column, the 

Match function was utilized in the same manner to match the 298 K and 273 K isotherms.  

Following this, a combined IFNA and IF function was utilized to find the location where both 195 K and 

273 K quantity adsorbed points matched to a 298 K point. 

[=IFNA(IF((AND(Y210>1,Z210>1)),ROW()),FALSE)]. 
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The IF function looks to see if there is a value in row Y (corresponding to 273 K rows with quantities 

adsorbed matching a 298 K value) and row Z (corresponding the comparable 195 K data) that are greater 

than 1, if there are, then it gives the row number that corresponds to that location. If both of those things 

are not true, then the IFNA function responds with a result of “FALSE.” 

We can use the SMALL function on our IFNA row to find the nth smallest number in the row from this info. 

We utilize a value range column ( =SMALL(AA:AA,A12)to allow us to iterate the small function to get the 

next smallest value in each subsequent row.  

Once we have the row numbers, which correspond directly to quantity adsorbed values for 298 K, we use 

an INDEX function to search through the entire file and find the data that is in the given row number. In 

this INDEX function, the $1:$1048576 tells the function that it is looking through the entire sheet, the AB 

column is a list of row numbers, so AB2 is our first-row number of interest, 14 refers to column N. 

Together, these two give us cell N210, the value shown, 2.51, is the value given in cell N210. This is the 

lowest quantity adsorbed value that matches between the three isotherms.  

 Additional INDEX functions are then used to find the corresponding pressure values for the given quantity 

adsorbed. 

The pressures are located in Column 12 (L) and row 210 (shown in AB2).  

Once all three pressure values and their corresponding quantities adsorbed were collected, they were 

analyzed using the Clausius-Clapeyron11-13 equation in the form: 

𝑙𝑛𝑃 =
𝑄

𝑅
∗
1

𝑇
 

The natural log of the pressure values was taken and compared against 1/T (1/298, 1/273, and 1/195). 

This gave us a series of lines with three data points each. We calculated the slope of each line using Excel’s 

SLOPE function, giving us the value for Q/R. We then multiplied this by R (0.008314 kJ/mol*K to give us 

the value of the heat of adsorption for each quantity adsorbed. We were then able to graph Heat of 

adsorption (in kJ/mol) versus the quantity adsorbed (in cm3/g STP). As shown in Figures S43-S50.  
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Figure S1. 1HNMR of H4ABTC in D6-DMSO. Integrations are shown in green indicating a 1:2 ratio 

expected. 

Experimental Data 
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Figure S2. A comparison of experimental PXRD patterns of the isomorphs of PCN-250 before 

thermal activation. The crystallinity of the experimental patterns is observed to be maintained 

for all isomorphs. Fe3 MOF (black), Al3 MOF (red), In3 MOF (blue), Sc3 MOF (gold), Fe/Ni MOF 

(purple), Fe/Zn MOF (maroon), Fe/Co MOF (green), Fe/Mn (orange). 

Figure S3. A comparison of experimental PXRD patterns of the isomorphs of PCN-250 after heat 

cycling. The crystallinity of the experimental patterns is observed to be maintained for all 

isomorphs. Fe3 MOF (black), Al3 MOF (red), In3 MOF (blue), Sc3 MOF (gold), Fe/Ni MOF (purple), 

Fe/Zn MOF (maroon), Fe/Co MOF (green), Fe/Mn (orange). 
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Figure S5. SEM images of A) Fe/Ni MOF, B) Fe/Mn MOF, C) Fe/Zn MOF, and D) Fe/Co MOF before 

thermal treatment. 

Figure S4. SEM images of A) Fe3 MOF, B) Sc3 MOF, C) In3 MOF, and D) Al3 MOF  before thermal 

treatment. 
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Figure S6. SEM images of A) Fe/Ni MOF, B) Fe/Mn MOF, C) Fe/Zn MOF, and D) Fe/Co MOF after 

thermal treatment. 

Figure S7. SEM images of A) Fe3 MOF, B) Sc3 MOF, C) In3 MOF, and D) Al3 MOF after thermal 

treatment. 
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Figure S8. TGA curve(black) of the Fe/Ni MOF before thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold), CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  

Figure S9. TGA curve(black) of the Fe/Ni MOF after thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  
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Figure S11. TGA curve(black) of the Fe/Zn MOF after thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  

 

Figure S10. TGA curve(black) of the Fe/Zn MOF before thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  
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Figure S12. TGA curve(black) of the Fe/Mn MOF before thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  

 

Figure S13. TGA curve(black) of the Fe/Mn MOF after thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  
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Figure S14. TGA curve(black) of the Fe/Co MOF before thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  

 

Figure S15. TGA curve(black) of the Fe/Co MOF after thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample. 
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Figure S16. TGA curve(black) of the Fe3 MOF before thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  

 

Figure S17. TGA curve(black) of the Fe3 MOF after thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  
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Figure S18. TGA curve(black) of the In3 MOF before thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  

 

Figure S19. TGA curve(black) of the In3 MOF after thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  
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Figure S20. TGA curve(black) of the Sc3 MOF before thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  

 

Figure S21. TGA curve(black) of the Sc3 MOF after thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  
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Figure S22. TGA curve(black) of the Al3 MOF before thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  

 

Figure S23. TGA curve(black) of the Al3 MOF after thermal cycling where specific gases, H2O 

(18amu blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were 

monitored for the temperature of gas release from the sample.  
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Figure S24. TGA curve (black) of the Fe/Zn preformed cluster where specific gases, H2O (18amu 

blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were monitored 

for the temperature of gas release from the sample.  

Figure S25. TGA curve(black) of the Fe3 preformed cluster where specific gases, H2O (18amu 

blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were monitored 

for the temperature of gas release from the sample. 
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Figure S26. TGA curve(black) of the Fe/Ni preformed cluster where specific gases, H2O (18amu 

blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were monitored 

for the temperature of gas release from the sample.  

Figure S27. TGA curve(black) of the Fe/Mn preformed cluster where specific gases, H2O (18amu 

blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were monitored 

for the temperature of gas release from the sample.  
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Figure S28. TGA curve(black) of the Fe/Co preformed cluster where specific gases, H2O (18amu 

blue), MeOH (31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were monitored 

for the temperature of gas release from the sample.  

 

Figure S29. TGA curve(black) of the ABTC linker where specific gases, H2O (18amu blue), MeOH 

(31 amu gold),  CO2(44amu maroon), and DMF (73 amu orange), were monitored for the 

temperature of gas release from the sample.  
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Figure S31. XAS of PCN-250 (Fe3) during heating study from 23 °C to 450 °C in the range of 7110 eV 

to 7180 eV. 

Figure S30. CO2 evolution during TGA-MS studies for all samples. The MS data has been 

normalized to time as decarboxylation occur at slightly different temperatures for the redox 

active cluster containing MOFs. CO2 evolution at decarboxylation is only observable for the redox 

active cluster containing MOFs (Fe/Co, Fe/Mn, Fe/Ni, Fe/Zn, and Fe3).  
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Figure S32. N2 Isotherms taken at 77K before samples underwent 100 hours of 185 °C vacuum 

activation. A) PCN250 (Fe/Zn), B) PCN-250 (Fe/Mn), C) PCN-250 (Fe/Co), D) PCN-250 (Fe/Ni). All of 

the samples show a characteristic type 1 isotherm.6  

Figure S33. N2 Isotherms taken at 77K before samples underwent 100 hours of 185 °C vacuum 

activation. A) PCN250 (Sc3), B) PCN-250 (In3), C) PCN-250 (Fe3), D) PCN-250 (Al3). All of the samples 

show a characteristic type 1 isotherm.6  
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Figure S35. N2 Isotherms taken at 77K after samples underwent 100 hours of 185 °C vacuum 

activation. A) PCN-250 (In3), B) PCN-250 (Sc3), C) PCN-250 (Fe3), D) PCN-250 (Al3). Only The 

PCN-250 (Fe3) sample shows mesopore generation as characterized by hysteresis loop 

formation.6 

Figure S34. N2 Isotherms taken at 77K after samples underwent 100 hours of 185 °C vacuum 

activation. A) PCN250 (Fe/Co), B) PCN-250 (Fe/Mn), C) PCN-250 (Fe/Ni), D) PCN-250 (Fe/Zn). All 

of the samples of the mixed metal cluster containing MOFs have generated mesopores as 

characterized by hysteresis loop formation.6  
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Figure S36. Pore Size distribution as compared to Pore Volume (cm3/g) in the PCN250 Isomorphs. 

The microporous samples(black) show no evidence of the 37Å mesopore that is formed during 

decarboxylation. The mesoporous samples (red) show the presence of the mesopore at 37Å. This 

pore is the result of cluster defect losses as the result of thermal decarboxylation.  

Figure S37. Pore Size distribution as compared to Pore Volume (cm3/g) in the PCN250 Isomorphs. 

The microporous samples(black) show no evidence of the 37Å mesopore that is formed during 

decarboxylation. The mesoporous samples (red) show the presence of the mesopore at 37Å. This 

pore is the result of cluster defect losses as the result of thermal decarboxylation.  
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Figure S38. Adsorption Isotherms of PCN-250 (Al3) for A) CO2 and B) CH4. 

Figure S39. Adsorption Isotherms of PCN-250 (Fe3) meso for A) CO2 and B) CH4. 

Figure S40. Adsorption Isotherms of PCN-250 (Fe3) micro for A) CO2 and B) CH4. 
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Figure S42. Adsorption Isotherms of PCN-250 (Fe/Ni) micro for A) CO2 and B) CH4. 

Figure S43. Adsorption Isotherms of PCN-250 (In) micro for A) CO2 and B) CH4. 

Figure S41. Adsorption Isotherms of PCN-250 (Fe/Zn) micro for A) CO2 and B) CH4. 
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Figure S44. Adsorption Isotherms of PCN-250 (Sc) micro for A) CO2 and B) CH4. 

Figure S45. Adsorption Isotherms of PCN-250 (Fe/Co) meso for A) CO2 and B) CH4. 

Figure S46. Adsorption Isotherms of PCN-250 (Fe/Co) micro for A) CO2 and B) CH4. 
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Figure S47. Adsorption Isotherms of PCN-250 (Fe/Mn) meso for A) CO2 and B) CH4. 

Figure S48. Adsorption Isotherms of PCN-250 (Fe/Mn) micro for A) CO2 and B) CH4. 

Figure S49. Adsorption Isotherms of PCN-250 (Fe/Ni) meso for A) CO2 and B) CH4. 
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Figure S50. Adsorption Isotherms of PCN-250 (Fe/Zn) meso for A) CO2 and B) CH4. 

Figure S51. Heat of Adsorptions calculated for PCN-250 (Fe/Ni) A) CO2 and B) CH4. Microporous 

sample (purple), Mesoporous sample (green).  

Figure S52. Heat of Adsorptions calculated for PCN-250 (Fe/Zn) A) CO2 and B) CH4. Microporous 

sample (purple), Mesoporous sample (green).  
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Figure S53. Heat of Adsorptions calculated for PCN-250 (Fe/Mn) A) CO2 and B) CH4. Microporous 

sample (purple), Mesoporous sample (green).  

Figure S54. Heat of Adsorptions calculated for PCN-250 (Fe/Co) A) CO2 and B) CH4. Microporous 

sample (purple), Mesoporous sample (green).  

Figure S55. Heat of Adsorptions calculated for PCN-250 (Fe3) A) CO2 and B) CH4. Microporous 

sample (purple), Mesoporous sample (green).  
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Figure S56. Heat of Adsorptions calculated for PCN-250 (In3) A) CO2 and B) CH4. Microporous 

sample (purple), No Mesoporous samples of this compound were able to be generated using the 

thermal decarboxylation method.  

Figure S57. Heat of Adsorptions calculated for PCN-250 (Sc3) A) CO2 and B) CH4. Microporous 

sample (purple), No Mesoporous samples of this compound were able to be generated using the 

thermal decarboxylation method.  

Figure S58. Heat of Adsorptions calculated for PCN-250 (Al3) A) CO2 and B) CH4. Microporous 

sample (purple), No Mesoporous samples of this compound were able to be generated using the 

thermal decarboxylation method.  
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Figure S59. UV-GC Chromatogram of the decomposed sample of PCN-250 (Fe3). The MOF was 

decomposed in pH=12 to yield the free H4ABTC ligands in solution. The UV-GC Chromatagram was 

collected, yielding three peaks with each peak being sampled for the component MS spectrum. 

The two peaks at 12.16 sec and 12.50 sec match the mass of the H4ABTC ligand. These two peaks 

correspond to the cis and trans form of H4ABTC, as azobenzenes are known to undergo 

isomerization in the presence of UV light, with this isomerization changing the properties of the 

molecule.7 The third peak at 13.06 sec matches the thermally decarboxylated ligand.   

Figure S60. UV-GC Chromatogram of the decomposed sample, PCN-250 (Fe/Co). The MOF was 

decomposed in pH=12 to yield the free H4ABTC ligands in solution. The UV-GC Chromatagram was 

collected yielding three peaks and each peak was sampled for its component MS spectrum. The 

two peaks at 12.17 sec and 12.48 sec match the mass of the H4ABTC ligand. These two peaks 

correspond to the cis and trans form of H4ABTC, as azobenzenes are known to undergo 

isomerization in the presence of UV light with this isomerization changing the properties of the 

molecule.7 The third peak at 13.28 sec matches the thermally decarboxylated ligand.   
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Figure S61. UV-GC Chromatogram of the decomposed sample of PCN-250 (Fe/Ni). The MOF was 

decomposed in pH=12 to yield the free H4ABTC ligands in solution. The UV-GC Chromatagram was 

collected, yielding three peaks with each peak being sampled for their component MS spectrum. 

The two peaks at 11.92 sec and 12.39 sec match the mass of the H4ABTC ligand. These two peaks 

correspond to the cis and trans form of H4ABTC, as azobenzenes are known to undergo 

isomerization in the presence of UV light, with this isomerization changing the properties of the 

molecule.7 The third peak at 12.87 sec matches the thermally decarboxylated ligand.   

Figure S62. UV-GC Chromatogram of the decomposed sample of PCN-250 (Fe/Mn). The MOF was 

decomposed in pH=12 to yield the free H4ABTC ligands in solution. The UV-GC Chromatagram was 

collected yielding three peaks, with each peak being sampled for their component MS spectrum. 

The two peaks at 12.13 sec and 12.46 sec match the mass of the H4ABTC ligand. The two peaks 

present here correspond to the cis and trans form of H4ABTC as azobenzenes are known to 

undergo isomerization in the presence of UV light, with this isomerization changing the properties 

of the molecule.7 The third peak at 13.02 sec matches the thermally decarboxylated ligand.   
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Figure S63. UV-GC Chromatogram of the decomposed sample of PCN-250 (Fe/Zn). The MOF was 

decomposed in pH=12 to yield the free H4ABTC ligands in solution. The UV-GC Chromatagram was 

collected yielding three peaks, with each peak being sampled for their component MS spectrum. 

The two peaks at 12.12 sec and 12.53 sec match the mass of the H4ABTC ligand. The two peaks 

present here correspond to the cis and trans form of H4ABTC, as azobenzenes are known to 

undergo isomerization in the presence of UV light, with this isomerization changing the properties 

of the molecule.7 The third peak at 13.01 sec matches the thermally decarboxylated ligand.   

Figure S64. UV-GC Chromatogram of decomposed sample of PCN-250 (Sc3). The MOF was 

decomposed in pH=12 to yield the free H4ABTC ligands in solution. The UV-GC Chromatagram was 

collected yielding three peaks, with each peak being sampled for their component MS spectrum. 

The two peaks at 12.06 sec and 12.46 sec match the mass of the H4ABTC ligand. The two peaks 

present here correspond to the cis and trans form of H4ABTC, as azobenzenes are known to 

undergo isomerization in the presence of UV light, with this isomerization changing the properties 

of the molecule.7 A third peak corresponding to the mass of the thermally decarboxylated ligand 

was not detected in this sample.   
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Figure S65. UV-GC Chromatogram of decomposed sample of PCN-250 (Al3). The MOF was 

decomposed in pH=12 to yield the free H4ABTC ligands in solution. The UV-GC Chromatagram was 

collected yielding three peaks, with each peak being sampled for their component MS spectrum. 

The two peaks at 12.21 sec and 12.48 sec match the mass of the H4ABTC ligand. The two peaks 

present here correspond to the cis and trans form of H4ABTC, as azobenzenes are known to 

undergo isomerization in the presence of UV light, with this isomerization changing the properties 

of the molecule.7 A third peak corresponding to the mass of the thermally decarboxylated ligand 

was not detected in this sample.   

Figure S66. UV-GC Chromatogram of the decomposed sample of PCN-250 (In3). The MOF was 

decomposed in pH=12 to yield the free H4ABTC ligands in solution. The UV-GC Chromatagram 

was collected yielding three peaks, with each peak being sampled for their component MS 

spectrum. The two peaks at 12.18 sec and 12.54 sec match the mass of the H4ABTC ligand. The 

two peaks present here correspond to the cis and trans form of H4ABTC, as azobenzenes are 

known to undergo isomerization in the presence of UV light, with this isomerization changing the 

properties of the molecule.7 A third peak corresponding to the mass of the thermally 

decarboxylated ligand was not detected in this sample.   
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Figure S67. Sample Mass Spectrum of the GC-MS studies taken from the 12.16 sec peak which is 

present for all MOFs in the study. The major component of the spectrum corresponds to the mass 

of the H4ABTC ligand.    

Figure S68. Sample Mass Spectrum of the GC-MS studies taken from the 13.06 sec peak that is 

present in the redox active cluster containing MOFs but not in the redox inert cluster containing 

MOFs. The major component of the spectrum corresponds to the mass of the decarboxylated 

H4ABTC ligand. The H4ABTC ligand is also present in the spectrum, but in a much smaller relative 

quantity.     
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Figure S69. Infrared Spectroscopy of microporous freshly synthesized sample (red) and thermally 

treated samples (black) of PCN250 (Al3), PCN250 (In3), PCN250 (Sc3), and PCN250 (Fe3). 

Figure S70. Infrared Spectroscopy of microporous freshly synthesized sample (red) and thermally 

treated samples (black) of PCN250 (Fe/Co), PCN250 (Fe/Zn), PCN250 (Fe/Ni), and PCN250 (Fe/Mn). 
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