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S1 Langmuir model fits
Fig. S1 displays the fits of the Langmuir model the experimentally measured xenon adsorption

isotherms in the porous materials.
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Figure S1: Experimentally measured xenon adsorption isotherms (298 K, except for MOF-505, 292

K, and Ni-MOF-74, 297 K) in the candidate materials (points) and fitted Langmuir adsorption models

(curves). (a) The raw gravimetric adsorption isotherms ρadsXe (P )/ρads . (b) The volumetric adsorption

isotherms, ρadsXe (P ), obtained from the gravimetric adsorption isotherms in (a) using the density of

the adsorbent, ρads . To compare the adsorbed and bulk xenon densities, the dashed curve shows

the density of the bulk gas, ρXe(P ).
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S2 Relationship between optimal tankage fraction and K and
ρads

Fig. S2 shows the relationship between the optimal tankage fraction in the adsorbed xenon storage

system and (a) the Langmuir parameter K of the adsorbent and (b) the density of the adsorbent,

ρads .
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Figure S2: The relationship between the optimal tankage fraction in an adsorbed xenon storage

system and the (a) Langmuir K parameter of the xenon adsorption isotherm in the adsorbent and

(b) the density ρads of the adsorbent.
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S3 Relationship between adsorbed propellant storage perfor-
mance

0 500 1000 1500 2000 2500
surface area [m²/g]

0

1

2

3

4

5

op
tim

al
 ta

nk
ag

e 
fra

ct
io

n,
 o

pt

Ni-MOF-74

SBMOF-2

CC3

SBMOF-1

Ni(PyC)2

HKUST-1

MOF-505

Co3(HCOO)6

Figure S3: The relationship between the optimum tankage fraction for the adsorbed xenon storage

systems and the gravimetric surface area [m
2
surface/g material] of the corresponding nanoporous

materials. We computed the surface areas of the materials from the crystal structures using iRASPA
[1], which defines the surface as a potential energy contour of a xenon adsorbate inside the pores of

the structure defined by the Universal Force Field [2] and uses a Monte Carlo procedure to compute

the area of the surface; see Ref. [1].
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S4 Bulk vs. crystal density of the nanoporous materials
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Figure S4: Investigating the impact of the approximation that the bulk density of the nanoporous

material, ρads , is equal to the crystal density. (a) A comparison of the crystal density and measured

bulk/tap density [3] of CC3, HKUST-1, and Ni-MOF-74. (b) The optimal tankage fraction and storage

pressure of an adsorbed xenon storage system using CC3, HKUST-1, and Ni-MOF-74, using the bulk

[hollow symbols] vs. crystal density [solid symbols] as input to the model.
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S5 Comparing bulk and adsorbed Xe storage systems at the same
storage pressure

In the main text, we optimized the storage pressure of each adsorbed xenon storage system. How-

ever, we may wish to compare a bulk and adsorbed xenon storage system at the same storage pres-
sure P . At the same storage pressure P , the difference in inverse tankage fractions in the adsorbed
and bulk Xe storage systems is, using eqns. 7 and 12:(

1

Tads
−
1

Tbulk

)
= wXe

2βσy
3ρvP

[
1

1 + ρads
2βσy
3ρvP

ρadsXe (P )− ρXe(P )

]
. (S1)

We write the difference in inverse tankage fractions– the mass of Xe stored per mass of storage

materials (pressure vessel walls + adsorbent)– because this difference is proportional to the net
adsorption [4] ρadsXe (P ) − ρXe(P ) in the adsorbent under a limiting case where the walls of the
pressure vessel dominate Tads . i.e.,

1

Tads
−
1

Tbulk
∼ ρadsXe (P )− ρXe(P ) (S2)

if:

• ρads is very small, resulting in a light adsorbent.

• σy is small or ρvP is large, resulting in a heavy pressure vessel.

Aside from this limiting case, in isolation, the net adsorption in the adsorbent is insufficient for com-

paring the tankage fraction of the bulk and adsorbed Xe storage systems, even when the comparison

is at the same pressure (see eqn. S1).
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