Electronic Supplementary Information

2,2'-(Arylenedivinylene)bis-8-hydroxyquinolines exhibiting aromatic $\pi-\pi$ stacking interactions as solution-processable p-type organic semiconductors for high-performance organic field effect transistors

Suman Sehlangia, ${ }^{\text {a }}$ Shivani Sharma, ${ }^{\text {b }}$ Satinder K. Sharma, ${ }^{* b}$ Chullikkattil P. Pradeep*a
a School of Basic Sciences, Indian Institute of Technology Mandi, Kamand-175 005, Himachal Pradesh, India. Fax: +91 1905 267009; Tel: +91 1905 267045; E-mail: pradeep@iitmandi.ac.in
${ }^{\mathrm{b}}$ School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Kamand175 005, Himachal Pradesh, India. Fax: +91 1905 267009; Tel: +91 1905 267134; E-mail: satinder@iitmandi.ac.in

S.No.	Caption	Page No
1.	Crystal and structure refinement data of D1	S2
2.	Graphical representation of the parameters used for the description of $\pi-\pi$ stacking interactions in D1	S3
3.	Packing analyses for possible m-m interactions in D1	S3, S4
4.	Various H-bonding and other weak-bonding interactions supporting the $\pi-\pi$ stacked 1-D chain-like arrangements in the crystal lattice of D1	S4
5.	The inter-connection of adjacent 1-D chain-like structures through C-H \cdots O interactions in a centro- symmetric fashion in the crystal lattice of D1	S4
6.	The overall packing arrangement of 1-D chain-like structures in the crystal lattice of D1 as viewed along the crystallographic a axis.	S
7.	Cyclic voltammograms and TGA curves of D1 and D2	$\mathrm{S} 5, \mathrm{~S} 6$
8.	HOMO-LUMO diagrams and energy band gap of geometrically optimized D1 and D2	S 6
9.	Output and transfer characteristics of OTFTs of D1 and D2	$\mathrm{S} 7, \mathrm{~S} 8$
10.	XRD patterns of powder and thin-films of D1 and D2	S 9
11.	References	S 10

Table S1. Crystal and structure refinement data of D1

Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
Formula weight	496.56
Crystal system	monoclinic
Space group	$P 2_{1 / c}$
a	$18.015(2) \AA$
b	$4.7644(5) \AA$
c	$28.334(5) \AA$
α	90.00°
β	$107.959(16)^{\circ}$
γ	90.00°
V	$2313.4(6) \AA^{3}$
Z	4
ρ	$1.426 \mathrm{~g} / \mathrm{cm}^{3}$
μ	$1.583 \mathrm{~mm}{ }^{-1}$
$F(000)$	1040.0
T	$150.0(5) \mathrm{K}$
Reflections collected	3115
Independent reflections	$2375\left[\mathrm{R}_{\mathrm{int}}=0.0669, \mathrm{Rs}\right.$ igma $\left.=0.0698\right]$
Data/ restraints/parameters	$2375 / 0 / 332$
Final R indices [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0861, \mathrm{wR}_{2}=0.1940$
R indices (all data)	$\mathrm{R}_{1}=0.1009, \mathrm{wR}_{2}=0.2060$
GOF	1.037

Crystallographic Alerts (A and B level) from CheckCIF and the author responses:

1) PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full value Low . 0.608 Why?

Author response: incomplete coverage of diffraction patterns and some data were rejected as poor during integration and scaling.
2) PLAT201_ALERT_2_A Isotropic non-H Atoms in Main Residue(s) 16 Report

Author response: Lack of data quality due to poorly diffracting nature of the crystals.
3) PLAT911_ALERT_3_B Missing FCF Refl Between Thmin \& STh/L= 0.5971612 Report

Author response: incomplete coverage of diffraction patterns and some data were rejected as poor during integration and scaling. Some reflections may have been stopped by the beam stop.

Analysis of supramolecular m-stacking interaction in the crystal structure of D1

The 'Analysis of short ring interactions' obtained using the CALC ALL option of PLATON ${ }^{1,2}$ were used. Out of the several such interactions listed, only the strong interactions characterized by short centroid-centroid contacts (<3.8 Å), near parallel ring planes ($\alpha<10^{\circ}$ to $\sim 0^{\circ}$), small slip angles ($\beta, \gamma<25^{\circ}$) and vertical displacements (slippage < $1.5 \AA$), which denote sizable overlap of the aryl plane areas, were considered. ${ }^{3,4}$ These interactions are listed in Table S2 below.

plane $P(J)$
Scheme S1. Graphical presentation of the parameters used for the description of $\pi-\pi$ stacking interactions.

- $\quad \mathrm{Cg}(\mathrm{I})=$ Ring Center-of-Gravity (Plane number I)
- $\alpha=$ Dihedral angle between planes I and $\mathrm{J}\left({ }^{\circ}\right)$
- $\beta=$ Angle $\mathrm{Cg}(\mathrm{I})-->\mathrm{Cg}(\mathrm{J})$ vector and normal to plane $\mathrm{I}\left({ }^{\circ}\right)$
- $\quad Y=$ Angle $\mathrm{Cg}(\mathrm{I})-->C g(J)$ vector and normal to plane $\mathrm{J}\left({ }^{\circ}\right)$
- $\mathrm{d}[\mathrm{Cg}(\mathrm{I}) \cdots \mathrm{Cg}(\mathrm{J})]=$ Distance between ring centroids (\AA)
- $d[C g(I) \cdots P(J)]=$ Perpendicular distance of $C g(I)$ on ring $J(A ̊)$
- $d[C g(J) \cdots P(I)]=$ Perpendicular distance of $\mathrm{Cg}(\mathrm{J})$ on ring $\mathrm{I}(\AA)$
- Slippage $\mathrm{d}[\mathrm{a}]=$ Distance between $\mathrm{Cg}(\mathrm{I})$ and perpendicular projection of $\mathrm{Cg}(\mathrm{J})$ on ring I (\AA).

Table S2: Packing analyses for possible $\pi-\pi$ interactions in D1 (see Scheme S1 above for details)

$\mathbf{C g}(\mathbf{I})$	$\mathbf{C g}(\mathbf{J})$	$[$ ARU(J) $\mathbf{]}$	$\mathbf{d}[\mathbf{C g}-$ $\mathbf{C g}]$ (\AA)	$\mathbf{\alpha}$ $\mathbf{(0)}$	$\boldsymbol{\beta}$ $\mathbf{(0)}$	\mathbf{Y} $\mathbf{(0)}$	$\mathbf{d}[\mathbf{C g}(\mathbf{I}) \cdots \mathbf{P}(\mathbf{d}) \mathbf{A}$	$\mathbf{d}[\mathbf{C g}(\mathbf{J}) \cdots$ $\mathbf{P}(\mathbf{I})] \AA$	Slippage $\mathbf{d}[\mathrm{a}](\AA)$
$\mathrm{Cg}(1)$	$\mathrm{Cg}(4)$	1565.01	3.725	1.7	20.4	18.8	3.5262	3.491	1.298
$\mathrm{Cg}(2)$	$\mathrm{Cg}(5)$	1545.01	3.720	1.77	19.1	19.6	3.5050	3.5156	1.215
$\mathrm{Cg}(4)$	$\mathrm{Cg}(1)$	1545.01	3.724	1.7	18.8	20.4	3.491	3.5260	1.199
$\mathrm{Cg}(5)$	$\mathrm{Cg}(2)$	1565.01	3.720	1.77	19.6	19.1	3.5156	3.5052	1.246

$[1565]=x, 1+y, z ;[1545]=x,-1+y, z$.

The $\mathrm{Cg}(\mathrm{I})$ refers to the Ring Center-of-Gravity numbers given in () as follows: $\mathrm{Cg}(1)$ $=$ Ring N1-C10-C11-C12-C13-C18; Cg(2) = Ring N2-C21-C22-C23-C24-C29; Cg(4) = Ring C13-C14-C15-C16-C17-C18; Cg(5) = Ring C24-C25-C26-C27-C28-C29.

Figure S1. Various H-bonding and other weak-bonding interactions supporting the $\pi-\pi$ stacked 1-D chain-like arrangements in the crystal lattice of D1.

Figure S 2 . The inter-connection of adjacent 1-D chain-like structures through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions in a centro-symmetric fashion in the crystal lattice of D1.

Figure S3. The overall packing arrangement of 1-D chain-like structures in the crystal lattice of D1 as viewed along crystallographic a axis.

Cyclic Voltammetric Analyses of D1 and D2

Figure S4. Cyclic voltammograms of D1 $(1.0 \mathrm{mM})$ and $\mathbf{D} 2(1.0 \mathrm{mM})$ in DMF solutions at a scan rate of $50 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with Pt as the working and counter electrodes, $\mathrm{Ag} / \mathrm{AgCl}$ electrode as the reference electrode, and $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$ as the supporting electrolyte.

TGA curves of D1 and D2

Figure S5. TGA curves of D1 and D2.

DFT simulation of D1 and D2

The HOMO and the LUMO energy levels of D1 and D2 were simulated at the B3LYP/6$31 G(d)$ level by Gaussian 09^{5} and the results are presented in Table 2 (Main text) and Figure S6, below. These calculations confirm that the LUMOs of D1 and D2 are mainly localized on one of the 8-HQ groups while the HOMOs are localized on the other 8HQ moiety.

Figure S6. HOMO-LUMO diagrams and energy band gap of geometrically optimized D1 and D2.

Output and transfer characteristics of OTFTs with thin films

Figure S7. Electrical characteristics of the Ag/D1/PMMA/ITO on Glass substrate at $25^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$; (a) output characteristics of $\mathrm{Ag} / \mathrm{D} 1 / \mathrm{PMMA} / \mathrm{ITO}$ at $25^{\circ} \mathrm{C}$, where $\mathrm{V}_{\text {ds }}$ was swept from 0 to -6 V at $\mathrm{V}_{\text {gs }}$ varied from 6 to -6 V with the step of 3 V ; (b) $\mathrm{I}_{\mathrm{ds}} \mathrm{Vs} \mathrm{V}_{\mathrm{gs}}$ (logarithmic and linear scale) at $\mathrm{V}_{\mathrm{ds}}=-6 \mathrm{~V}$ for gate voltage varying from -5 V to 0 V for $\mathrm{Ag} / \mathrm{D} 1 / \mathrm{PMMA} / \mathrm{ITO}$ at $25^{\circ} \mathrm{C}$; (c) output characteristics of Ag/D1/PMMA/ITO at $50^{\circ} \mathrm{C}$, where $\mathrm{V}_{\text {ds }}$ was swept from 0 to -6 V at V_{gs} varied from 6 to -6 V with the step of 3 V ; (d) Ids $\mathrm{Vs} \mathrm{V}_{\mathrm{gs}}$ (logarithmic and linear scale) at $\mathrm{V}_{\mathrm{ds}}=-6 \mathrm{~V}$ for gate voltage varying from -5 V to 0 V for $\mathrm{Ag} / \mathrm{D} 1 / \mathrm{PMMA} / \mathrm{ITO}$ at $50^{\circ} \mathrm{C}$.

Figure S8. Electrical characteristics of the $\mathrm{Ag} / \mathrm{D} 2 / \mathrm{PMMA} / \mathrm{ITO}$, OFETs on glass substrate at $25^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$; (a) output characteristics of $\mathrm{Ag} / \mathrm{D} 2 / \mathrm{PMMA} / \mathrm{TO}$ at $25^{\circ} \mathrm{C}$, where $\mathrm{V}_{\text {ds }}$ was swept from 0 to -6 V at $\mathrm{V}_{\text {gs }}$ varied from 6 to -6 V with the step of 3 V ; (b) Ids $\mathrm{Vs} \mathrm{V}_{\mathrm{gs}}$ (logarithmic and linear scale) at $\mathrm{V}_{\mathrm{ds}}=-6 \mathrm{~V}$ for gate voltage varying from -5 V to 0 V for $\mathrm{Ag} / \mathrm{D} 2 / \mathrm{PMMA} / I T \mathrm{O}$ at $25^{\circ} \mathrm{C}$; (c) output characteristics of Ag/D2/PMMA/ITO at $50^{\circ} \mathrm{C}$, where V_{ds} was swept from 0 to -6 V at V_{gs} varied from 6 to -6 V with the step of 3 V ; (d) lds $\mathrm{Vs} \mathrm{V}_{\mathrm{gs}}$ (logarithmic and linear scale) at $\mathrm{V}_{\mathrm{ds}}=-6 \mathrm{~V}$ for gate voltage varying from -5 V to 0 V for $\mathrm{Ag} / \mathrm{D} 2 / \mathrm{PMMA} / \mathrm{TO}$ at $50^{\circ} \mathrm{C}$.

Figure S9. XRD patterns of powder and thin-films of (a) D1 and (b) D2.

References

1. A. L. Spek, Acta Crystallogr. Sect. D. 2009, 65, 148.
2. A. L. Spek, PLATON-A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2005
3. C. Janiak, J. Chem. Soc. Dalton Trans. 2000, 3885.
4. A. Tahli, Ü. Köc, R. F. M. Elshaarawy, A. C. Kautz and C. Janiak, Crystals. 2016, 6, 23.
5. A. H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. lyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, " O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
