Supporting Information

A Water-Soluble Copper-Immobilized Covalent Organic Framework

Functioning as an "OFF-ON" Fluorescent Sensor for Amino Acids

Lamiaa Reda Ahmed,^a Ahmed F. M. EL-Mahdy,^b Cheng-Tang Pan,^{a,c} and Shiao-Wei Kuo*^{b,d}

^aInstitute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.

^bDepartment of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.

^cDepartment of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.

^dDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807,

Taiwan.

Corresponding authors: Shiao-Wei Kuo, +886-7-5252000 ext 4079, E-mail: <u>kuosw@faculty.nsysu.edu.tw</u>

Section	Content	Page No.			
S1	Characterization	S 3			
S2	Synthetic Procedures	S4			
S 3	Spectral Profiles of Monomers	\$5			
S4	PXRD data and BET parameters	S8			
SE	Structural Modeling and Fractional Atomic Coordinates for COF	60			
	Structure				
S6	Field Emission Scanning Electron Microscopy (FE-SEM)	S12			
S7	Transmission Electron Microscopy (TEM)	S12			
S8	Thermal Gravimetric Analysis	S13			
S9	Chemical Stability of the TFPB-DHTH COF	S13			
S10	Photophyscial Properties of TFPB-DHTH COF	S15			
S11	X-Ray photoelectron spectroscopy (XPS) analysis	S16			
S12	"OFF-ON" Fluorescence Detection Assay	S17			
S13	References	S20			

S1. Characterization

¹H and ¹³C NMR spectroscopy. NMR spectra were recorded using an INOVA 500 instrument with DMSO d_6 and CDCl₃ as solvents and tetramethylsilane (TMS) as the external standard. Chemical shifts are provided in parts per million (ppm).

Fourier-transform infrared spectroscopy (FRIR) spectroscopy. FTIR spectra were recorded using a Bruker Tensor 27 FTIR spectrophotometer and the conventional KBr plate method; 32 scans were collected at a resolution of 4 cm⁻¹.

Solid state nuclear magnetic resonance (SSNMR) spectroscopy. SSNMR spectra were recorded using a a Brukerb avance III HD Solid State NMR spectrometer in National Cheng Kung University and a Bruker magic-angle-spinning (MAS) probe, running 32,000 scans.

Thermogravimetric analysis (TGA). TGA was performed using a TA Q-50 analyzer under a flow of N_2 . The samples were sealed in a Pt cell and heated from 40 to 800 °C at a heating rate of 20 °C min⁻¹ under N_2 at a flow rate of 50 mL min⁻¹.

Powder X-Ray Diffraction (PXRD). PXRD was performed using a Siemens D5000 and monochromated $Cu/K\alpha$ ($\lambda = 0.1542 \text{ nm}$). The sample was spread in a thin layer on the square recess of an XRD sample holder.

Surface area and porosimetry (ASAP/BET). The BET surface areas and porosimetry measurements of the prepared samples (ca. 20–100 mg) were performed using a Micromeritics ASAP 2020 Surface Area and Porosity analyzer. Nitrogen isotherms were generated through incremental exposure to ultrahigh-purity N_2 (up to ca. 1 atm) in a liquid N_2 (77 K) bath.

COF structural simulations. Molecular modeling was performed using Reflex, a software package for crystal determination from XRD patterns. Unit cell dimensions were first determined manually from the observed XRD peak positions using the coordinates.

S2. Synthetic Procedures

Scheme S1. Synthesis of 2,5-dihydroxyterephthalohydrazide (DHTH).

Scheme S2. Synthesis of 1,3,5-tris(4-formylphenyl)benzene (TFPB-3CHO).

Figure S1. FT-IR spectrum of 2,5-dihydroxyterephthalohydrazide (DHTH).

Figure S2. ¹H NMR spectrum of 2,5-dihydroxyterephthalohydrazide (DHTH).

Figure S3. ¹³C NMR spectrum of 2,5-dihydroxyterephthalohydrazide (DHTH).

Figure S4. FT-IR spectrum of 1,3,5-tris(4-formylphenyl)benzene (TFPB-3CHO).

Figure S5. ¹H NMR spectrum of 1,3,5-tris(4-formylphenyl)benzene (TFPB-3CHO).

Figure S6. ¹³C NMR spectrum of 1,3,5-tris(4-formylphenyl)benzene (TFPB-3CHO).

S4. PXRD data and BET parameters

COF	S _{BET}	d ₁₀₀	Pore size	Pore volume	Interlayer
	(m ² g ⁻¹)	(nm)	(nm)	(cm ³ g ⁻¹)	Distance (Å)
TFPB-DHTH	360	4.01	3.77	0.58	3.45

Table S1. PXRD and BET parameters of the synthesized COFs.

S5. Structural Modeling and Fractional Atomic Coordinates for COF Structure

Figure S7. Crystalline structure for the TFPB-DHTH COF (a, b) completely eclipsed AA-stacking models and (c, d) staggered AB-stacking successions models.

AA-stacking model.								
Sample Name : TFPB-DHTH COF								
Space Gro	oup : P 1							
a = 46.231	= 46.23100, b = 46.23100, c = 4.07851 $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$							
$R_{wp} = 4.9$	$R_{wp} = 4.91\%$ $R_p = 3.72\%$							
Atom	x/a	y/b	z/c	Atom	x/a	y/b	z/c	
C1	0.60426	0.16673	0.5738	C30	0.46226	0.45959	0.25054	
C2	0.63673	0.19111	0.65973	C31	0.48424	0.44661	0.26022	
C2	0.65015	0 22402	0.50724	C22	0.51000	0 46671	0.24016	

Table S2 Eractional atomic coordinates for the unit cell of the TEPR-DHTH COF with eclipsed

Space Group : P 1								
a = 46.23100, $b = 46.23100$, $c = 4.07851$				$\alpha = \beta =$	$\alpha = \beta = 90^\circ, \gamma = 120^\circ$			
$R_{wp} = 4.91\%$ $R_p = 3.72\%$								
Atom	x/a	y/b	z/c	Atom	x/a	y/b	z/c	
C1	0.60426	0.16673	0.5738	C30	0.46226	0.45959	0.25054	
C2	0.63673	0.19111	0.65973	C31	0.48424	0.44661	0.26022	
C3	0.65015	0.22492	0.58724	C32	0.51808	0.46671	0.34016	
C4	0.63177	0.23618	0.42363	C33	0.52917	0.50025	0.42553	
C5	0.59947	0.21165	0.32712	C34	0.50722	0.51309	0.4148	
C6	0.58584	0.17733	0.40141	C35	0.3656	0.59073	0.29195	
C7	0.64626	0.27342	0.37002	C36	0.3855	0.57542	0.31643	
C8	0.68111	0.29453	0.33079	C37	0.41322	0.58845	0.50815	
C9	0.69591	0.32958	0.30566	C38	0.42057	0.61732	0.67092	
C10	0.67483	0.34363	0.31535	C39	0.40109	0.63278	0.6441	
C11	0.63981	0.32357	0.35304	C40	0.37315	0.6198	0.45534	
C12	0.62599	0.2884	0.37741	C41	0.39172	0.74692	0.30685	
C13	0.73343	0.35151	0.27487	C42	0.40689	0.782	0.34308	
C14	0.75573	0.34509	0.4376	C43	0.39395	0.79577	0.54594	
C15	0.7907	0.36565	0.4086	C44	0.36507	0.77355	0.70481	
C16	0.80453	0.39298	0.21231	C45	0.34959	0.73876	0.66409	
C17	0.78231	0.39921	0.04827	C46	0.36282	0.72468	0.46771	
C18	0.74743	0.37907	0.08071	C47	0.31649	0.61655	0.4326	
C19	0.61798	0.33947	0.38123	C48	0.35178	0.63618	0.43683	
C20	0.62477	0.36861	0.22251	C49	0.36648	0.67142	0.43972	
C21	0.60444	0.38338	0.2541	C50	0.34683	0.68705	0.44126	
C22	0.57668	0.36946	0.44562	C51	0.31162	0.66652	0.43353	
C23	0.57005	0.34051	0.60386	C52	0.29576	0.63115	0.43066	
C24	0.59028	0.3259	0.57316	C53	0.2065	0.55569	0.34482	
C25	0.43456	0.5726	0.55288	C54	0.24137	0.5767	0.31905	
C26	0.55389	0.38371	0.48768	C55	0.25777	0.60946	0.43623	
C27	0.54222	0.45405	0.30016	C56	0.2373	0.62071	0.56695	
C28	0.45136	0.50836	0.27167	C57	0.20225	0.59995	0.58412	
C29	0.4737	0.49345	0.32085	C58	0.18643	0.56694	0.47801	

y/bz/cx/av/bz/cAtom x/aAtom C59 O94 0.15043 0.54272 0.54611 0.55116 0.04217 1.12888 C60 0.06628 0.50066 0.51526 095 0.03054 0.53167 0.8047 C61 0.01017 0.45985 0.31285 O96 0.42899 0.43868 0.171 C62 0.02951 0.48861 0.48527 O97 0.5616 0.52172 0.52563 C63 0.01257 0.50192 0.64602 **O98** 0.48433 0.03746 0.53628 C64 099 0.58939 0.13348 0.72852 0.43866 0.14689 0.91378 C65 0.54364 0.04903 0.89174 O100 0.51578 0.93492 0.64883 C66 0.52993 -0.007360.71674 H101 0.90904 0.42221 0.75111 C67 0.01895 0.7001 H102 0.9588 0.41405 0.14448 0.52255 H103 C68 0.49296 0.01246 0.55459 0.65146 0.18419 0.79835 C69 0.83225 0.62778 H104 0.67461 0.24256 0.67369 0.41183 C70 0.45369 0.91791 0.37901 H105 0.58451 0.21903 0.19805 C71 0.47773 0.9531 0.48059 H106 0.56043 0.15948 0.33756 C72 0.5079 0.96027 0.61426 H107 0.69703 0.28362 0.31656 C73 0.47116 0.97982 0.4405 H108 0.68601 0.37053 0.30609 C74 H109 0.59939 0.84161 0.41458 0.16635 0.27263 0.4097 C75 0.92055 0.43616 0.51981 H110 0.74614 0.32445 0.59198 C76 0.48071 H111 0.95789 0.45566 0.80705 0.36 0.53742 C77 0.9751 0.44328 0.3108 H112 0.792 0.4197 -0.10777 C78 0.97717 0.48524 H113 0.64455 0.73131 0.38453 -0.05292 N79 H114 0.4328 0.54845 0.3887 0.64543 0.37968 0.06852 N80 0.45352 0.53428 0.44079 H115 0.61017 0.40549 0.12673 N81 0.55825 0.41109 0.36125 H116 0.5492 0.32924 0.75627 N82 H117 0.5358 0.42335 0.40717 0.58452 0.30425 0.70698 N83 0.1262 0.55042 0.52049 H118 0.45268 0.58221 0.73097 N84 0.0927 0.52953 0.6487 H119 0.53272 0.37037 0.63409 N85 0.56254 0.10523 0.65474 H120 0.46983 0.54245 0.6207 N86 0.54717 0.08052 0.87915 H121 0.5142 0.40946 0.53338 N87 0.42914 0.44291 H122 0.85674 0.47512 0.42105 0.19282 N88 0.44784 0.89038 0.54431 H123 0.51697 0.53908 0.47151 N89 0.41531 0.35348 H124 0.86352 0.34458 0.5801 0.14152 N90 0.89872 0.43529 0.31457 H125 0.37926 0.55335 0.18661 N91 0.49789 H126 0.43148 0.06753 0.44147 0.62788 0.82297 092 0.56789 0.47115 0.16181 H127 0.40742 0.65453 0.7785 O93 0.07811 0.51141 0.76167 H128 0.40253 0.73711 0.1519

Continuous (Table S3)

Atom	x/a	y/b	z/c	Atom	x/a	y/b	z/c
H129	0.42937	0.79829	0.22056	H143	0.5549	0.09004	1.09248
H130	0.35479	0.78315	0.86767	H144	0.55265	-0.00281	0.82681
H131	0.32789	0.72271	0.79647	H145	0.01616	0.53844	0.92055
H132	0.30524	0.5897	0.44415	H146	0.42304	0.41522	0.11419
H133	0.39339	0.68685	0.4464	H147	0.57586	0.51118	0.5624
H134	0.29659	0.67843	0.42586	H148	0.46269	0.0298	0.42389
H135	0.19516	0.53031	0.26262	H149	0.40929	0.83837	0.85458
H136	0.25547	0.56697	0.20857	H150	0.45842	0.89514	0.75488
H137	0.24835	0.64516	0.6676	H151	0.44842	0.97464	0.32881
H138	0.18766	0.60907	0.69633	H152	0.53849	0.94318	0.74377
H139	0.14444	0.51884	0.64124	H153	0.8503	0.43044	-0.02783
H140	0.10755	0.55107	0.50868	H154	0.90968	0.44937	0.12957
H141	0.02228	0.44895	0.18691	H155	0.96457	0.49485	0.77931
H142	0.60098	0.13456	0.93938	H156	0.93344	0.40241	0.14459

Continuous (Table S3)

S6. Field Emission Scanning Electron Microscopy (FE-SEM)

Figure S8. FE-SEM images of the TFPB-DHTH COF at different magnification scales: (a) 2 μ m, X3,000 and (b) 3 μ m, X2,500.

S7. Transmission Electron Microscopy (TEM)

Figure S9. TEM images of the TFPB-DHTH COF different magnification scales: (a) 200 nm, (b) 100 nm, (c) 50 nm, and (d) 10 nm.

S8. Thermal Gravimetric Analysis

Figure S10. Thermogravimetric analysis trace of the TFPB-DHTH COF under (a) nitrogen and (b) air atmospheres with heating rate of 20°C min⁻¹.

S9. Chemical Stability of the TFPB-DHTH COF

Figure S11. PXRD patterns of the TFPB-DHTH COF as-synthesized and after immersing 2 days in various solvents.

TableS3. BET surface areas of the TFPB-DHTH COF as-synthesized and after immersing 2 days in various solvents.

TFPB-DHTH COF	S _{BET}
	$(m^2 g^{-1})$
As-synthesized	360
THF	358
Acetone	355
DMF	340
H ₂ O	360
1x PBS buffer	259
1M KOH	335
1M HCl	332

S10. Photophyscial Properties of TFPB-DHTH COF

Figure S12. (a) Time-dependent fluorescence emission spectra and (b) Time-dependent fluorescence emission intensities at wavelength of 520 nm of the TFPB-DHTH COF dissolved in water within 60 mins (excitation at 365 nm).

Figure S13. Bandgaps of TFPB-DHTH COF calculated by Tauc-plot.

S11. X-Ray photoelectron spectroscopy (XPS) analysis

Figure S14. XPS spectra of TFPB-DHTH and Cu@TFPB-DHTH COFs.

Figure S15. O 1s XPS spectra of (a) TFPB-DHTH and (b) Cu@TFPB-DHTH COFs. Cu 2p XPS spectrum of (c) Cu@TFPB-DHTH COF.

S12. "OFF-ON" Fluorescence Detection Assay

Figure S16. The effect of (a, c) pH and (b, d) time on the fluorescence recovery of the emission peak at wavelength of 520 nm in the presence of (a, b) cysteine (400 μ M) or (c, d) _L-histidine (500 μ M).

Figure S17. Fluorescence emission intensities at wavelength of 520 nm of the Cu@TFPB-DHTH COF dissolved in 1X PBS buffer (pH = 7.4) in the presence of cysteine, histidine and other amino acids. Measurements were carried out at a Cu@TFPB-DHTH COF concentration of 0.125 mg mL-1 COF and 200 μ M Cu²⁺ ion and a concentration of amino acid of 200 μ M under excitation at 365 nm.

	Probe	Limit of detection	Ref.
Cysteine			
	Organic molecule	460 nM	S 1
	Organic molecule	874 nM	S2
	Organic molecule	8400 nM	S 3
	DPAS-Cys	2400 nM	S4
	FSD-103-Cu ²⁺	200 nM	S5
	AgAuNCs@11-MUA-Cu ²⁺	111 nM	S6
	Cu@TFPB-DHTH COF	340 nM	This work
_L -histidine			
	AgAuNCs@11-MUA-Cu ²⁺	87 nM	S 6
	Ni ²⁺ -modulated Hcy-capped	200 nM	S7
	CdTe QDs		
	$[Cu(LH_2)Cl_2] \cdot 2H_2O$	1890 nM	S8
	EPANS-based probe	1000 nM	S9
	Chiral carbazole with urea-	7640 nM	S10
	carboxylic acid moiety (CCS)		
	ruthenium(II) tris(bipyridine)	1380	S11
	derivative (Ru-DPA)		
	Cu@TFPB-DHTH COF	520 nM	This work

Table S4. Comparison of detection limit with previously reported methods for cysteine and $_{L}$ -histidine.

S13. Reference

- [S1] Y. Yue, F. Huo, P. Ning, Y. Zhang, J. Chao, X. Meng and C. Yin, J. Am. Chem. Soc., 2017, 8, 3181–3185.
- [S2] C. Chen, W. Liu, C. Xu and W. Liu, Biosens. Bioelectron., 2016, 85, 46-52.
- [S3] L. Bu, J. Chen, X. Wei, X. Li, H. Ågren and Y. Xie, *Dyes Pigm.*, 2017, **136**, 724–731.
- [S4] W. Cheng, X. Xue, F. Zhang, B. Zhang, T. Li, L. Peng, D. H. Cho, H. Chen, J. Fang, and X. Chen, *Analytica Chimica Acta*, 2020, **1127**, 20–28.
- [S5] Y. Caia, J. Fang, H. Zhu, W. Qin, Y. Cao, H. Yu, G. Shao, Y. Liu, and W. Liu, Sens. Actuators B-Chem., 2020, 303, 127214.
- [S6] J. Sun, F. Yang, D. Zhao, C. Chen, and X. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 6860-6866.
- [S7] P. Wu, and X. -P. Yan, Biosens. Bioelectron., 2010, 26, 485-490.
- [S8] C. Das, B. Pakhira, A. L. Rheingold, and S. K. Chattopadhyay, Inorganica Chim. Acta, 2018, 482, 292-298.
- [S9] X. Li, H. Ma, L. Nie, M. Sun, and S. Xiong, Anal. Chim. Acta, 2004, 515, 255-260.
- [S10] A. Pundi, C. J. Chang, J. Chen, S. R. Hsieh, and M. C. Lee, Sens. Actuators B-Chem., 2021, 328, 129084.
- [S11] Y. Yang, Y. Li, X. Zhi, Y. Xu, and M. Li, Dyes Pigm., 2020, 183, 108690.