Supporting Information

Switching between TADF and RTP: Anion-Regulated Photoluminescence in Organic Salts and Co-crystals

Zhen Xu, Duane Hean, Clàudia Climent and David Casanova* and Michael O. Wolf*

General

Solvents used were reagent grade and used without any further purification. HPLC grade solvents were used for analyses. 9-H carbazole was purchased from Sigma-Aldrich (China) and was crystallized from toluene solution before use. Other purchased chemicals were used without further purification. **Cbz-C4-Br** was synthesized following the literature procedure.¹

Spectroscopy

¹H, ¹³C{¹H}, COSY, NOESY, HSQC and HMBC NMR experiments were collected using a Bruker AV-400 spectrometer and referenced first to TMS and then to the residual protonated solvent peak. NMR solvents (Aldrich or Cambridge Isotope Laboratories) were used as received. Electrospray ionization mass spectrometry data were obtained using a Bruker Esquire LC ion trap mass spectrometer. Infrared spectroscopy was performed on an attenuated total reflection (ATR) crystal using a Perkin-Elmer Frontier FT-IR spectrometer. UV-vis absorption spectra were recorded on a Varian-Cary 5000 UV-Vis-near-IR spectrophotometer. Steady-state photoluminescence data were collected using a Photon Technology International (PTI) QuantaMaster 50 fluorimeter fitted with an integrating sphere, double excitation monochrometer and utilizing a 75 W Xe arc lamp as the source. Fluorescence and phosphorescence lifetime data were collected using a Horiba Yvon Fluorocube TCSPC apparatus with a 370 nm NanoLED (fluorescence) or a 359 nm Horiba spectral LED (phosphorescence). The photoluminescence lifetime data were fitted using the DAS6 Data Analysis software package. Time-resolved photoluminescence spectra utilizing a 1 ms delay were measured using a Photon Technology International (PTI) QuantaMaster 400 equipped with a 359 nm Horiba spectral LED. Samples for low-temperature spectroscopy and lifetime measurements were cooled using an Oxford Instruments Optistat DN. HPLC was performed using an Agilent Technologies 1260 Infinity instrument equipped with an Agilent 4.6×150 mm ZORBAX Extend-C18 column. The isocratic mobile phase was composed of 25% acetonitrile, 75% water with a flow rate of 3 mL/min. The detector wavelength was set to 292 or 360 nm.

X-Ray Diffraction

Single-crystal X-ray data were collected using a Bruker APEX DUO diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 100 K. Raw frame data were processed using APEX2. The program SAINT+, v.7.68 was used to reduce the data and the program SADABS was used to make corrections to the empirical absorptions. Space group assignments were made using XPREP on all compounds. In all cases, the structures were solved in the Olex2 suite² of programs using Intrinsic Phasing and refined using full-matrix least-squares/difference Fourier techniques on F² using SHELXL.³ Diagrams and publication material were generated using CrystalMaker. Powder X-ray crystallography data were collected on a Bruker X8 APEX II diffractometer with graphite monochromated Mo-K α radiation.

Powder X-Ray Diffraction (pXRD) Data

Figure S1. Powder X-ray diffraction (pXRD) patterns of **Py-Br**, **Py -Cl**, **Qui-Br** and **Qui-BF**₄ crystalline powder compared to their single crystal simulated patterns.

Photophysical Data

Figure S2. Absorption (solid lines) and photoluminescence spectra (dash lines) of all compounds in 2.5×10^{-5} M CH₂Cl₂ solution. Inset: zoomed in absorption spectra between 350-430 nm to show broad charge transfer feature of **Py-I**.

The following equations were used to determine k_{risc} :⁴

$$\frac{\phi_{DF}}{\phi_{PF}} = \frac{A_{DF}\tau_{DF}}{A_{PF}\tau_{PF}} \quad \text{eq 1.}$$

$$k_{risc} = \frac{1}{\tau_{DF}1 - \phi_{risc}\phi_{isc}} = \frac{\phi_{risc}}{\tau_{DF}}(\frac{\phi_{DF} + \phi_{PF}}{\phi_{PF}}) \approx \frac{1}{\tau_{DF}}(\frac{\phi_{DF} + \phi_{PF}}{\phi_{PF}}) \quad \text{eq 2.}$$

Tomporatura		Prompt	Delayed	Delayed		
Temperature	Prompt Lifetime (ns)	Amplitude	Lifetime (ns)	Amplitude	DF/PF	Ln(Krisc)
250	18.5	0.385	1100	0.615	94.980695	18.2843
260	16.8	0.382	992	0.618	95.5272999	18.3934
270	14.9	0.395	871	0.605	89.5344491	18.4594
280	13.4	0.396	790	0.604	89.9216041	18.5612
290	12.1	0.394	715	0.606	90.8860175	18.6715
300	11.7	0.379	685	0.621	95.9305866	18.7678

Table S1. Variable temperature lifetime data of Py-Br.

Temperature	Prompt Lifetime (ns)	Prompt	Delayed	Delayed	DE/PE	Ln(Krisc)
remperature	rompt Licture (iis)	Amplitude	Lifetime (ns)	Amplitude	Diyii	
260	57.1	0.84	452	0.16	1.50779751	15.5290
270	52.7	0.82	414	0.18	1.72444115	15.6997
280	48.2	0.78	392	0.22	2.29386105	15.9441
290	43.9	0.73	372	0.27	3.13414672	16.2237
300	39.7	0.65	336	0.35	4.55725635	16.6213
310	38.9	0.625	344	0.375	5.3059126	16.7241

 Table S2. Variable temperature lifetime data of Qui-Br.

Figure S3. (a) Steady-state and time-resolved photoluminescence spectra of crystalline Qui-Br at room temperature under air and at 77 K. (b) Fluorescence decay curve of crystalline Qui-Br at room temperature under air. (c) Phosphorescence decay curve of crystalline Qui-Br at room temperature under air and at 77 K. (d) Arrhenius plot of $\ln(k_{RISC})$ versus temperature to calculate ΔE_{ST} .

Figure S4. (a) Excitation power dependence of **Py-Br** delayed fluorescence. (b) Power law fitting plot of excitation power *vs.* delayed fluorescence integration (0.15 to 2 μ s).

Figure S5. (a) Excitation power dependence of **Qui-Br** delayed fluorescence. (b) Power law fitting plot of excitation power *vs.* delayed fluorescence integration (0.15 to 2 μ s).

Figure S6. Fluorescence decay curves of crystalline Py-BF₄, Py-PF₆, Py-Cl and Qui-BF₄ at room temperature under air.

Figure S7. (a) Steady-state and time-resolved photoluminescence spectra of crystalline Py-Cs-Br at room temperature under air. (b) Fluorescence decay curve of crystalline Py-Cs-Br at room temperature under air.
(c) Phosphorescence decay curve of crystalline Py-Cs-Br at room temperature under air.

Figure S8. (a) Steady-state and time-resolved photoluminescence spectra of crystalline $Py-Cs-BF_4$ at room temperature under air. (b) Fluorescence decay curve of crystalline $Py-Cs-BF_4$ at room temperature under air. (c) Phosphorescence decay curve of crystalline $Py-Cs-BF_4$ at room temperature under air.

Table S3. Chi-square values of RTP lifetime fitting.

	RTP	Phosphorecence 77 K
Py-Br	1.05	1.23
Py-BF ₄	1.41	1.24
Py-PF ₆	0.987	1.08
Py -Cl	1.03	1.39

Qui-Br	1.41	1.22
Qui-BF₄	1.39	1.17
Ру-А	1.19	N/A
Py-Cs-Br	1.16	N/A
Py-Cs-BF₄	1.67	N/A

Synthesis

Py-Br

Cbz-C4-Br (0.604 g, 2.00 mmol, 1.0 equiv.) was dissolved in 5 mL pyridine. The mixture was stirred at 80 °C until all the **Cbz-C4-Br** was consumed, as monitored by TLC. Pyridine was

removed under vacuum and the product was filtered and washed with Et₂O. Dissolving the resulting solid in CH₂Cl₂ and slow evaporation of the solution afforded the pure compound as off-white crystals (0.760 g, 1.99 mmol, 100 %). ¹H NMR (400 MHz, CD₂Cl₂) δ 9.11 (dd, *J* = 6.6, 1.4 Hz, 2H, H₁₁), 8.29 (tt, *J* = 7.8, 1.4 Hz, 1H, H₁₃), 8.09 (dt, *J* = 7.8, 1.0 Hz, 2H, H₂), 7.85 (t, *J* = 7.0 Hz, 1H, H₁₂), 7.51-7.44 (m, 4H, H₄ and H₅), 7.26 (ddd, *J* = 7.9, 6.6, 1.5 Hz, 2H, H₃), 4.79 (t, *J* = 7.0 Hz, 2H, H₁₀), 4.49 (t, *J* = 6.2 Hz, 2H, H₇), 2.10 (m, 4H, H₈ and H₉). ¹³C {¹H} NMR (101 MHz, CD₂Cl₂)) δ 144.9 (C₁₃), 144.6 (C₁₁), 140.2 (C₆), 128.1 (C₁₂), 125.9 (C₄), 122.7 (C₁), 120.3 (C₂), 119.1 (C₃), 109.0 (C₅), 61.2 (C₁₀), 42.2 (C₇), 29.4 (C₉), 25.1 (C₈). HR-ESI MS: *m/z* calcd. for C₂₁H₂₁N₂: 301.1705; Found: 301.1704 [M–Br]⁺.

Py-BF₄

Py-Br (0.097 g, 0.255 mmol, 1.0 equiv.) was dissolved in a minimal amount of acetone at room temperature. An excess of saturated NH₄BF₄ aqueous solution was added and the resultant mixture was filtered. The solid was washed with deionized H₂O and then dried under vacuum. Slow evaporation of an acetone solution of the resulting solid afforded pale-yellow crystals as pure product (0.081 g, 0.209 mmol, 82 %). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.40 (d, *J*=5.5 Hz, 2H, H₁₁), 8.34 (td, *J*=8.0, 1.4 Hz, 1H, H₁₃), 8.11 (d, *J*=7.8 Hz, 2H, H₂), 7.86 (t, *J*=7.0 Hz, 1H, H₁₂), 7.50-7.44 (m, 4H, H₄ and H₅), 7.26 (ddd, *J*=7.9, 6.3, 1.8 Hz, 2H, H₃), 4.46 (t, *J*=5.8 Hz, 2H, H₇), 4.38 (t, *J*=7.4 Hz, 2H, H₁₀), 2.06 (m, 4H, H₈ and H₉). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂)) δ 145.5 (C₁₃), 144.0 (C₁₁), 140.2 (C₆), 128.5 (C₁₂), 126.0 (C₄), 122.7 (C₁), 120.3 (C₂), 119.21(C₃), 108.8 (C₅), 62.0 (C₁₀), 42.0 (C₇), 29.0 (C₉), 25.0 (C₈). HR-ESI MS: *m/z* calcd. for C₂₁H₂₁N₂: 301.1705; Found: 301.1703 [M-BF₄]⁺.

Py-PF₆

Py-Br (0.170 g, 0.446 mmol, 1.0 equiv.) was dissolved in minimal amount of acetone at room temperature. An excess of saturated NH₄PF₆ aqueous solution was added and the resultant mixture was filtered. The solid was washed first with deionized water and then dried under vacuum. Slow evaporation of an acetone solution of the solid afforded colorless crystals as pure product (0.199 g, 0.446 mmol, 100%). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.35 (t, *J* =7.9, 1.3 Hz, 1H, H₁₃), 8.25 (d, *J* =5.9 Hz, 2H, H₁₁), 8.11 (d, *J* = 7.8 Hz, 2H, H₂), 7.86 (t, *J* = 7.0 Hz, 1H, H₁₂), 7.50-7.43 (m, H₄ and H₅), 7.26 (ddd, *J* =7.9, 6.8, 1.3 Hz, 2H, H₃), 4.46 (t, *J* = 7.2 Hz, 2H, H₇), 4.30 (t, *J* = 7.0 Hz, 2H, H₁₀), 2.05 (m, 4H, H₈ and H₉). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂)) δ 145.5 (C₁₃), 143.7 (C₁₁), 140.1 (C₆), 128.6 (C₁₂), 126.0 (C₄), 122.1 (C₁), 120.4 (C₂), 119.2 (C₃), 108.7 (C₅), 62.1 (C₁₀), 42.0 (C₇), 29.0 (C₉), 24.9 (C₈). HR-ESI MS: *m/z* calcd. for C₂₁H₂₁N₂: 301.1705; Found: 301.1701 [M-PF₆]⁺.

Py-Cl

Py-PF₆ (0.084 g, 0.188 mmol, 1.0 equiv.) were dissolved in a minimal amount of acetone at room temperature. Tetrabutylammonium chloride (0.105 g, 0.376 mmol, 2.0 equiv.) was then added and the resultant mixture was filtered. The collected solid was washed with cold acetone and then dried under vacuum. Slow evaporation of the crude solid in CH₂Cl₂ solution afforded white crystals as pure product (0.050 g, 0.119 mmol, 79 %). ¹H NMR (400 MHz, CD₂Cl₂) δ 9.20 (d, *J* = 5.6 Hz, 2H, H₁₁), 8.34 (t, *J* = 7.9, 1H, H₁₃), 8.09 (d, *J* = 7.8 Hz, 2H, H₂), 7.85 (t, *J* = 6.9 Hz, 1H, H₁₂), 7.50-7.43 (m, 4H, H₄ and H₅), 7.26 (ddd, *J* = 8.0, 6.5, 1.6 Hz, 2H, H₃), 4.84 (t, *J* = 6.9 Hz, 2H, H₁₀), 4.49 (t, *J* = 6.3 Hz, 2H, H₇), 2.09 (m, 4H, H₈ and H₉). ¹³C {¹H} NMR (101 MHz, CD₂Cl₂)) δ 144.9 (C₁₁), 144.7 (C₁₃), 140.3 (C₆), 128.1 (C₁₂), 125.9 (C₄), 122.7 (C₁),

120.3 (C₂), 119.0(C₃), 108.9 (C₅), 61.2 (C₁₀), 42.2 (C₇), 29.4 (C₉), 25.1 (C₈). HR-ESI MS: *m/z* calcd. for C₂₁H₂₁N₂: 301.1705; Found: 301.1705 [M–Cl]⁺.

Py-PF₆ (0.096 g, 0.215 mmol, 1.0 equiv.) was dissolved in a minimal amount of acetone at room temperature. Tetrabutylammonium iodide (0.159 g, 0.430 mmol, 2.0 equiv.) was then added and the resultant mixture was filtered. The solid was washed first with cold acetone and then dried under vacuum. Slow evaporation of a CH₂Cl₂ solution of the solid afforded white crystals as pure product (0.070 g, 0.163 mmol, 76 %). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.87 (d, J =6.0 Hz, 2H, H₁₁), 8.33 (t, J =8.0, 1H, H₁₃), 8.10 (d, J = 7.8 Hz, 2H, H₂), 7.87 (t, J = 7.3 Hz, 1H, H₁₂), 7.51-7.45 (m, 4H, H₄ and H₅), 7.26 (ddd, J =8.0, 6.2, 1.9 Hz, 2H, H₃), 4.65 (t, J = 6.9 Hz, 2H, H₁₀), 4.49 (t, J = 6.0 Hz, 2H, H₇), 2.12 (m, 4H, H₈ and H₉). ¹³C {¹H} NMR (101 MHz, CD₂Cl₂)) δ 145.1 (C₁₃), 144.3 (C₁₁), 140.2 (C₆), 128.2 (C₁₂), 126.0 (C₄), 122.7 (C₁), 120.3 (C₂), 119.1 (C₃), 109.0 (C₅), 61.4 (C₁₀), 42.1 (C₇), 29.3 (C₉), 25.0 (C₈). HR-ESI MS: *m/z* calcd. for C₂₁H₂₁N₂: 301.1705; Found: 301.1703 [M–I]⁺.

Qui-Br

Cbz-C4-Br (0.604 g, 2.00 mmol, 1.0 equiv.) was dissolved in 5 mL quinoline. The mixture was stirred for 2 h at 80 °C. After cooling to room temperature, Et₂O was added and the product was filtered and washed with Et₂O. Slow evaporation of an acetone solution of the solid afforded orange crystals as pure product (0.800 g, 1.85 mmol, 93 %). ¹H NMR (400 MHz, CD₂Cl₂) δ 10.49 (d, *J* = 5.8, 1H, H₁₁), 8.73 (d, *J* = 8.3 Hz, 1H, H₁₃), 8.11 (d, *J* = 7.9 Hz, 1H, H₁₆), 7.98 (d, *J* = 7.8 Hz, 2H, H₂), 7.93-7.79 (m, 4H, H₁₂, H₁₆, H₁₇ and H₁₈), 7.46 (d, *J* = 8.1

Hz, 2H, H₅), 7.42 (m, 2H, H₄), 7.19 (t, J=7.3 Hz, 2H, H₃), 5.25 (t, J=7.6 Hz, 2H, H₁₀), 4.46 (t, J=6.5 Hz, 2H, H₇), 2.25 (m, 2H, H₈), 2.13 (m, 2H, H₉). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 150.8 (C₁₁), 147.0 (C₁₃), 140.8 (C₆), 138.0 (C₁₅), 136.2 (C₁₇), 131.2 (C₁₉), 130.5 (C₁₈), 130.2 (C₁₄), 126.4 (C₄), 123.2 (C₁), 122.5 (C₁₂), 120.8 (C₂), 119.5(C₃), 118.3 (C₁₆), 109.5 (C₅), 57.7 (C₁₀), 42.7 (C₇), 27.8 (C₉), 25.9 (C₈). HR-ESI MS: *m/z* calcd. for C₂₅H₂₃N₂: 351.1861; Found: 351.1859 [M-Br]⁺.

Qui-BF₄

Qui-Br (0.129 g, 0.300 mmol, 1.0 equiv.) was dissolved in a minimal amount of acetone at room temperature. An excess of saturated NH₄BF₄ aqueous solution was added and the resultant mixture was filtered. The solid was washed first with deionized H₂O and then dried under vacuum. Slow evaporation of a CH₂Cl₂ solution of the solid afforded yellow crystals as the pure product (0.100 g, 0.228 mmol, 77 %). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.44 (dd, *J* = 6.2, 1.3 Hz, 1H, H₁₁), 9.22 (d, *J*=8.3 Hz, 1H, H₁₃), 8.52 (d, *J* = 9.0 Hz, 1H, H₁₆), 8.45 (dd, *J*=8.3, 1.0 Hz, 1H, H₁₉), 8.21 (ddd, *J* = 8.7 Hz, 7.0, 1.5 Hz, 1H, H₁₇), 8.12 (d, *J* = 7.5 Hz, 2H, H₂), 8.10 (m, 1H, H₁₂), 8.03 (t, *J*=7.6 Hz, 1H, H₁₈), 7.59 (d, *J* = 8.2 Hz, 2H, H₅), 7.43 (ddd, *J*=8.3, 7.1, 1.2 Hz, 2H, H₄), 7.19 (t, *J*=7.4 Hz, 2H, H₃), 5.04 (t, *J*=7.2 Hz, 2H, H₁₀), 4.43 (t, *J*=7.0 Hz, 2H, H₇), 2.06 (m, 2H, H₉), 1.92 (m, 2H, H₈). ¹³C {¹H} NMR (101 MHz, DMSO-*d*₆) δ 149.6 (C₁₁), 147.5 (C₁₃), 139.9 (C₆), 137.4 (C₁₅), 135.7 (C₁₇), 130.8 (C₁₉), 129.9 (C₁₈), 129.8 (C₁₄), 125.8 (C₄), 122.1 (C₁ and C₁₂), 120.4 (C₂), 118.9 (C₃ and C₁₆), 109.3 (C₅), 51.2 (C₁₀), 41.7 (C₇), 27.0 (C₉), 25.4 (C₈). HR-ESI MS: *m/z* calcd. for C₂₅H₂₃N₂: 351.1861; Found: 351.1859 [M-BF₄]⁺.

Cs-C4-Br

Cs-C4-Br was synthesized following literature procedure.⁵ ¹H NMR (400 MHz, CD₂Cl₂) δ 8.05 (dd, *J* = 8.0, 1.6 Hz, 2H), 8.73 (m, 2H,), 7.66 (d, *J* = 7.9 Hz, 2H), 7.40 (d, *J* = 8.6 Hz, 2H),

7.30 (m, 2H) , 4.25 (t, J = 7.0 Hz, 2H), 3.46 (t, J = 6.4 Hz, 2H), 2.03 (m, 4H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 141.5, 133.7, 125.4, 123.9, 122.5, 116.9, 47.7, 33.7, 29.9, 25.8.

Py-Cs-Br

Cs-C4-Br (0.732 g, 2.00 mmol, 1.0 equiv.) was dissolved in 5 mL pyridine. The mixture was stirred at 80 °C until all the **Cs-C4-Br** was consumed, as monitored by TLC. Pyridine was removed under vacuum and the product was filtered and washed with Et₂O. Dissolving the resultant solid in CH₂Cl₂ and slow evaporation of the solution afforded the pure compound as colourless crystals (0.800 g, 1.79 mmol, 89.8 %). ¹H NMR (400 MHz, CD₂Cl₂) δ 9.37 (dd, *J* = 6.8, 1.5 Hz, 2H), 8.27 (tt, *J* = 7.8, 1.4 Hz, 1H), 8.09 (dd, *J* = 7.9, 1.6 Hz, 2H), 7.86 (t, *J* = 7.0 Hz, 2H), 7.63 (m, 2H), 7.48 (d, *J* = 8.5 Hz, 2H), 7.29 (m, 2H), 4.87 (t, *J* = 7.6 Hz, 2H), 4.41 (t, *J* = 5.5 Hz, 2H), 2.07 (m, 4H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂)) δ 145.6, 145.3, 142.1, 133.9, 128.5, 126.2, 123.6, 122.8, 118.2, 61.2, 46.9, 28.5, 23.8. HR-ESI MS: *m/z* calcd. for C₂₁H₂₁N₂O₂S: 365.1327; Found: 365.1321 [M–Br]⁺.

Py-Cs-BF₄

Py-Br (0.060 g, 0.135 mmol, 1.0 equiv.) was dissolved in a minimal amount of methanol at room temperature. An excess of saturated NH₄BF₄ aqueous solution was added and the resultant mixture was filtered. The solid was washed with deionized H₂O and then dried under vacuum. Slow evaporation of an acetone solution of the resulting solid afforded pale yellow crystals as pure product (0.050 g, 0.111 mmol, 82 %). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.73 (d, *J* = 6.1 Hz, 2H), 8.34 (t, *J* = 7.8, 1H), 8.01 (dd, *J* = 7.9, 1.6 Hz, 2H), 7.63 (ddd, *J* = 7.2, 1.6 Hz, 2H), 7.43 (d, *J* = 8.5 Hz 2H), 7.30 (ddd, *J* = 7.4, 0.9 Hz, 2H), 4.46 (t, *J* = 7.3 Hz, 2H), 4.39 (t, *J* = 5.6 Hz, 2H), 1.99 (m, 4H). ¹³C {¹H} NMR (101 MHz, CD₂Cl₂)) δ 145.6, 145.0, 142.2, 133.9, 128.9, 126.5, 123.6, 123.0, 118.1, 62.1, 46.6, 28.1, 23.8. HR-ESI MS: *m/z* calcd. for C₂₁H₂₁N₂O₂S: 365.1327; Found: 365.1322 [M–BF₄]⁺.

Figure S10. ¹³C $\{^{1}H\}$ NMR spectra of **Py-Br** in CD₂Cl₂ at 25 °C.

Figure S11. ¹H NMR spectrum of **Py-BF₄** in CD₂Cl₂ at 25 °C.

Figure S12. ¹³C $\{^{1}H\}$ NMR spectrum of Py-BF₄ in CD₂Cl₂ at 25 °C.

Figure S14. $^{13}C\{^{1}H\}$ NMR spectrum of $Py\text{-}PF_{6}$ in $CD_{2}Cl_{2}$ at 25 °C.

Figure S15. ¹H NMR spectrum of Py-Cl in CD₂Cl₂ at 25 °C.

Figure S16. $^{13}C\{^{1}H\}$ NMR spectrum of Py-Cl in CD₂Cl₂ at 25 °C.

Figure S17. ¹H NMR spectrum of Qui-Br in CD₂Cl₂ at 25 °C.

Figure S18. ${}^{13}C{}^{1}H$ NMR spectrum of Qui-Br in CD₂Cl₂ at 25 °C.

Figure S20. ¹³C{¹H} NMR spectrum of Qui-BF₄ in DMSO- d_6 at 25 °C.

Figure S21. ¹H NMR spectrum of Cs-C4-Br in CD₂Cl₂ at 25 °C.

Figure S22. ¹³C $\{^{1}H\}$ NMR spectrum of Cs-C4-Br in CD₂Cl₂ at 25 °C.

Figure S23. ¹H NMR spectrum of Py-Cs-Br in CD₂Cl₂ at 25 °C.

Figure S24. ¹³C $\{^{1}H\}$ NMR spectrum of Py-Cs-Br in CD₂Cl₂ at 25 °C.

Figure S25. ¹H NMR spectrum of Py-Cs-BF₄ in CD₂Cl₂ at 25 °C.

Figure S26. ¹³C $\{^{1}H\}$ NMR spectrum of Py-Cs-BF₄ in CD₂Cl₂ at 25 °C.

Electronic structure calculations

Electronic structure calculations were performed within the density functional theory (DFT) with the ω B97X-D exchange-correlation functional⁶ and the 6-31+G(d) basis set for all the atoms except for iodine for which 6-311G(d) and the LANL2DZ (pseudopotential) were used instead. Vertical excitations were obtained at the (linear response) time-dependent DFT (TDDFT) level with and without the Tamm-Dancoff approximation (TDA).

Unless indicated, all calculations have been done for molecules, molecular dimers, tetramers and hexamers from the crystal structure, with and without the presence of counter anions. In order to mimic the dielectric of the crystal, calculations have been performed by embedding molecules and oligomers within a dielectric continuum with the conductor-like polarizable continuum model (C-PCM) ⁷⁻⁹. Dichloromethane was used as the dielectric environment with a dielectric constant $\varepsilon = 8.93$ and optical dielectric constant of 2.03. All calculations were done with the Q-Chem package. ¹⁰

Table S4. Vertical excitation energies (in eV) to the lowest excited triplet and singlet states and oscillator strengths (in parenthesis) of **Py-Cl**, **Py-Br**, **Py-I**, **Py-BF**₄ and **Py-PF**₆ crystal dimers with two counterions computed at the ω B97X-D/6-31+G(d) level (full TDDFT linear response). CZ = carbazole. ${}^{3}\pi^{+}\pi^{+*}(Py)'$ contains ~10% CT (CZ \rightarrow Py). ΔE_{ST} indicates the singlet-triplet energy gap between ${}^{1}\pi\pi^{*}(CZ)$ and the nearest triplet state with some localization on the CZ moiety. Shading of rows to facilitate state character recognition.

state	Py-Cl	Py-Br	Py-I	Py-BF ₄	Py-PF ₆
Triplet states	,				
$^{3}\pi\pi^{*}$ (CZ)	3.25	3.23	3.28	3.13	3.28
$^{3}\pi\pi^{*}$ (CZ)	3.25	3.23	3.28	3.13	3.28
$^{3}\pi\pi^{*}$ (CZ)	3.48	3.48	3.49	3.42	3.48
$^{3}\pi\pi^{*}$ (CZ)	3.48	3.48	3.49	3.42	3.48
$^{3}\pi^{+}\pi^{+}*$ (Py)'	3.99	3.98	3.89	3.80	4.05
$^{3}\pi^{+}\pi^{+}*$ (Py)'	4.04	4.01	3.99	3.89	4.06
$^{3}\pi^{+}\pi^{+}*(Py)$	4.07	4.04	4.03	3.91	4.14
$^{3}\pi^{+}\pi^{+}*$ (Py)	4.12	4.07	4.12	4.01	4.14
$^{3}\pi\pi^{*}$ (CZ)	4.15	4.13	4.16	4.06	4.16
$^{3}\pi\pi^{*}$ (CZ)	4.15	4.13	4.16	4.06	4.17
$^{3}\pi\pi^{*}$ (CZ)+Ry	d 4.30	4.25	4.31	4.14	4.26
$^{3}\pi\pi^{*}$ (CZ)+Ry	d 4.30	4.25	4.31	4.14	4.27
${}^{3}[p(I) \rightarrow Py]$	-	-	4.36	-	-
Singlet states	5				
$^{1}\pi\pi^{*}$ (CZ)	4.27 (0.16)	4.27 (0.15)	4.28 (0.17)	4.21 (0.15)	4.26 (0.16)
$^{1}\pi\pi^{*}$ (CZ)	4.28 (0.00)	4.27 (0.00)	4.28 (0.00)	4.21 (0.00)	4.27 (0.00)
$p(I) \rightarrow Py$]	-	-	4.36 (0.00)	-	-
$\Delta E_{\rm ST}$	0.124	0.143	0.114	0.147	0.095

Table S5. Vertical excitation energies (in eV) to the lowest excited triplet and singlet states and oscillator strengths (in parenthesis) of **Py-Cl**, **Py-Br**, **Py-I**, **Py-BF**₄ and **Py-PF**₆ crystal dimers with two counterions computed at the ω B97X-D/6-31+G(d) level within the TDA. CZ = carbazole. ${}^{3}\pi^{+}\pi^{+*}(Py)$ ' contains ~10% CT (CZ \rightarrow Py). ΔE_{ST} indicates the singlet-triplet energy gap between ${}^{1}\pi\pi^{*}$ (CZ) and the nearest triplet state with some localization on the CZ moiety. Shading of rows to facilitate state character recognition.

state	Py-Cl	Py-Br	Py-I	Py-BF ₄	Py-PF ₆
Triplet state	s				
$^{3}\pi\pi^{*}(CZ)$	3.59	3.57	3.60	3.51	3.59
$^{3}\pi\pi^{*}$ (CZ)	3.59	3.57	3.60	3.51	3.59
$^{3}\pi\pi^{*}$ (CZ)	3.61	3.61	3.63	3.54	3.64
$^{3}\pi\pi^{*}$ (CZ)	3.61	3.61	3.63	3.54	3.64
$^{3}\pi^{+}\pi^{+}*$ (Py)	4.15	4.14	4.07	3.99	4.22
$^{3}\pi^{+}\pi^{+}*$ (Py)	4.21	4.17	4.18	4.09	4.22
$^{3}\pi\pi^{*}$ (CZ)	4.23	4.21	4.24	4.14	4.25
$^{3}\pi\pi^{*}$ (CZ)	4.23	4.21	4.24	4.14	4.26
$^{3}\pi^{+}\pi^{+}*$ (Py)'	4.41	4.39	4.34	4.25	4.47
$^{3}\pi^{+}\pi^{+}*$ (Py)'	4.46	4.43	4.41	4.34	4.47
${}^{3}[p(I) \rightarrow Py]$			4.36		
Singlet state	S				
$^{1}\pi\pi^{*}$ (CZ)	4.38 (0.17)	4.38 (0.17)	4.38 (0.19)	4.31 (0.17)	4.37 (0.17)
$^{1}\pi\pi^{*}$ (CZ)	4.38 (0.00)	4.38 (0.00)	4.38 (0.00)	4.31 (0.00)	4.37 (0.00)
$^{1}[p(I)\rightarrow Py]$			4.36 (0.00)		
$\Delta E_{\rm ST}$	0.150	0.168	0.143	0.163	0.109

Table S6. Vertical excitation energies (in eV) to the lowest excited triplet and singlet states and oscillator strengths (in parenthesis) of **Py-I** crystal dimers with two counterions computed at the ω B97X-D/LANL2DZ level within the full (linear response) **TDDFT** and the **TDA**. CZ = carbazole and Py = pyridinium. ΔE_{ST} indicates the singlet-triplet energy gap between ${}^{1}\pi\pi^{*}$ (CZ) and the nearest triplet state with some localization on the CZ moiety. Shading of rows to facilitate state character recognition.

state	TDA	TDDFT
Triplet states		
$^{3}\pi\pi^{*}$ (CZ)	3.75	3.38
$^{3}\pi\pi^{*}$ (CZ)	3.75	3.38
$^{3}\pi\pi^{*}$ (CZ)	3.77	3.65
$^{3}\pi\pi^{*}$ (CZ)	3.77	3.65
$^{3}\pi^{+}\pi^{+}*$ (Py)	4.33	4.01
$^{3}\pi^{+}\pi^{+}*$ (Py)	4.46	4.09
${}^{3}[p(I) \rightarrow Py]$	4.22	4.22
Singlet states		
$^{1}\pi\pi^{*}$ (CZ)	4.57 (0.18)	4.47 (0.17)
$^{1}\pi\pi^{*}$ (CZ)	4.57 (0.00)	4.47 (0.00)
$^{1}[p(I)\rightarrow Py]$	4.22 (0.00)	4.22 (0.00)
$\Delta E_{\rm ST}$	0.171	0.129

Figure S27. Molecular orbitals involved in the iodine (HOMO-3) to pyridinium (LUMO) CT transition of **Py-I** computed for the molecular dimer crystal structure.

Table S7. Vertical excitation energies (in eV) to the lowest excited triplet and singlet states and oscillator strengths (in parenthesis) of **Qui-BF**₄ crystal tetramers 1 and 2, TET-1 and TET-2, and hexamer, HEX, as indicated in Figure S18 computed at the ω B97X-D/6-31+G(d) level (full TDDFT linear response). CZ = ${}^{3}\pi\pi^{*}$ carbazole, Qui = ${}^{3}\pi^{+}\pi^{+*}$ quinolinium, CT = ${}^{3}\pi\pi^{+*}$ CZ \rightarrow Qui. ΔE_{ST} indicates the singlet-triplet energy gap between the lowest singlet and the nearest triplet state with some localization on the CZ moiety. Shading of rows to facilitate state character recognition.

state	TET-1	TET-2	state	HEX
Triplet states				
Qui & CT	2.83	2.83	Qui & CT	2.84
Qui & CT	2.84	2.86	Qui & CT	2.84
Qui	2.88	2.86	Qui & CT	2.88
Qui	2.88	2.86	Qui & CT	2.88
СТ	3.08	3.07	Qui	2.96
СТ	3.08	3.07	Qui	2.96
CZ	3.28	3.29	СТ	3.04
CZ	3.28	3.29	СТ	3.04
CZ	3.29	3.29	CT	3.08
CZ	3.29	3.29	СТ	3.08
СТ	3.37	3.37	CZ	3.30
СТ	3.37	3.37	CZ	3.30
Singlet states				
СТ	3.16 (0.000)	3.15 (0.050)	CT	3.12 (0.056)
СТ	3.16 (0.047)	3.16 (0.000)	СТ	3.12 (0.000)
CT	3.49 (0.007)	3.48 (0.000)	CT	3.17 (0.000)
CT	3.49 (0.002)	3.49 (0.009)	CT	3.17 (0.047)
Qui & CZ & CT	4.22 (0.020)	4.20 (0.000)	CT	3.46 (0.001)
Qui & CZ & CT	4.22 (0.000)	4.23 (0.010)	СТ	3.46 (0.008)
$\Delta E_{\rm ST}$	0.085	0.083		0.04

Figure S28. Representation of the crystal structure of $Qui-BF_4$ hexamer (HEX) with tetramers 1 (TET-1) and 2 (TET-2) indicated in blue and red squares, respectively. CZ = carbazole, Qui = quinolinium.

Figure S29. Example of molecular orbitals involved in the low-lying excited states of **Qui-BF**₄ computed for the crystal structure hexamer showing electron distribution delocalized over quinolinium and carbazole stacked moleties. HOMO-14 (left) and LUMO (right) exhibiting $\pi - \pi^+$ and $\pi^+ - \pi^+$ interactions, respectively.

Table S8. Vertical excitation energies (in eV) to the lowest excited singlet states and oscillator of Qui^+ molecule at the ground (GS geom.) and excited state (ES geom.) minima computed at the ω B97X-D/6-31+G(d) level in DCM solution. Character: Qui⁺ = quinolinium localized exciton, CZ = carbazole localized exciton. Molecular orbital contributions for the two states in their corresponding PES minima are shown in Figure S20.

state	character	GS geom.	ES geom.
S ₁	Qui ⁺	4.22	3.56
S_2	CZ	4.28	4.01

Figure S30. Main orbital contributions to the excited singlet states of **Qui**⁺ localized on quinolinium (left) and carbazole (right) moieties at their respective potential energy minima computed at the ω B97X-D/6-31+G(d) level in DCM solution.

Table S9. Low-lying triplet state vertical excitation energies (in eV) and SOCs (in cm⁻¹) to the lowest excited singlet state (S₁) of **Py-Br** and **Py**⁺ (in parenthesis) monomers in the crystal structure computed at the TDDFT ω B97X-D/6-31+G(d) level. $\Delta E(S_1) = 4.27$ (4.28) eV.

state	ΔE	SOC
T ₁	3.24 (3.23)	2.299 (2.349)
T_2	3.49 (3.50)	0.210 (0.192)
T ₃	4.01 (4.01)	0.045 (0.018)
T_4	4.10 (4.12)	0.275 (0.016)
T ₅	4.13 (4.13)	0.462 (0.475)
T ₆	4.26 (4.26)	0.128 (0.049)
T ₇	4.65 (4.65)	0.079 (0.081)
T ₈	4.73 (4.78)	2.378 (1.089)
T9	4.79 (4.92)	1.067 (0.074)

Table S10. Low-lying triplet state vertical excitation energies (in eV) and SOCs (in cm⁻¹) to the lowest excited singlet state (S₁) of **Qui-Br** and **Qui**⁺ (in parenthesis) monomers in the crystal structure computed at the TDA ω B97X-D/6-31+G(d) level. $\Delta E(S_1) = 4.13$ (4.19) eV.

state	ΔE	SOC
T ₁	2.71 (2.74)	1.137 (0.202)
T_2	3.25 (3.32)	0.102 (0.159)
T ₃	3.49 (3.51)	0.049 (0.015)
T_4	3.58 (3.58)	3.634 (1.396)
T ₅	4.18 (4.18)	0.086 (0.043)
T ₆	4.31 (4.31)	23.541 (0.557)
T ₇	4.32 (4.32)	22.267 (0.708)

Figure S31. (a) HPLC trace of recrystallized 9-H carbazole starting materials. (b) Fluorescence spectrum of recrystallized 9-H carbazole.

Compound	Py-BF ₄	Py-Br	Py-Cl	Py -PF ₆
CCDC	2024261	2024263	20204262	2024264
Empirical formula	$C_{21}H_{21}N_2BF_4$	$C_{21}H_{23}N_2OBr$	$C_{21}H_{23}N_2OCl$	$C_{21}H_{21}N_2PF_6$
Formula weight	388.21	399.32	354.86	446.37
Temperature/K	100.15	100.15	100.15	100.15
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group	Pbca	Pbca	Pbca	Pbca
a/Å	15.42(7)	15.2783(11)	15.316(19)	16.349(7)
b/Å	9.79(5)	9.6864(7)	9.637(14)	9.779(4)
c/Å	25.07(11)	25.9263(19)	25.52(4)	24.784(10)
a/°	90	90	90	90
β/°	90	90	90	90
γ/°	90	90	90	90
Volume/Å ³	3786(30)	3836.9(5)	3767(9)	3962(3)
Z	8	8	8	8
$\rho_{calc}g/cm^3$	1.362	1.383	1.251	1.496

Table S11. Summary of crystallographic data

μ/mm^{-1}	0.107	2.153	0.214	0.204
F(000)	1616.0	1648.0	1504.0	1840.0
Crystal size/mm ³	$0.367 \times 0.111 \times$	0.33 imes 0.17 imes	$0.333 \times 0.09 \times 0.05$	0.455 imes 0.111 imes
	0.08	0.025		0.09
Radiation/Å	0.71073	0.71073	0.71073	0.71073
$2\theta_{max}$ /°	52.888	56.564	53.074	61.284
Reflections collected	15716	27795	62541	56137
Unique reflections	3810	4743	3899	6096
Goodness-of-fit on F ²	1.004	1.040	1.202	1.025
Final R ₁ indexes	0.0915	0.0684	0.0914	0.0495
Final wR (F ²) indexes	0.1088	0.1391	0.2063	0.0902

Compound	Py-I	Qui-BF ₄	Qui-Br
CCDC	2024266	2024268	2024267
Empirical formula	$C_{21}H_{21}N_2I$	$C_{25}H_{23}N_2BF4$	$C_{25}H_{24,22}N_2O_{0.61}Br$
Formula weight	428.30	438.26	442.20
Temperature/K	100.15	100.15	100.15
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	Pbca	$P2_1/n$	$P2_1/n$
a/Å	15.18(3)	10.349(13)	10.1665(7)
b/Å	9.822(16)	16.85(2)	16.1182(13)
c/Å	24.70(4)	12.139(18)	13.0048(11)
$\alpha/^{\circ}$	90	90	90
β/°	90	101.03(3)	99.468(4)
γ/°	90	90	90
Volume/Å ³	3683(11)	2077(5)	2102.0(3)

Z	8	4	4
$\rho_{calc}g/cm^3$	1.545	1.401	1.397
μ/mm^{-1}	1.743	0.107	1.972
F(000)	1712.0	912.0	912.0
Crystal size/mm ³	$0.387 \times 0.1 \times 0.05$	$0.333 \times 0.09 \times 0.05$	$0.3\times0.08\times0.07$
Radiation/Å	0.71073	0.71073	0.71073)
$2\theta_{max}$ /°	61.176	53.084	52.79
Reflections collected	23735	24421	17071
Unique reflections	5619	4279	4277
Goodness-of-fit on F ²	1.023	1.022	1.059
Final R ₁ indexes	0.0643	0.1220	0.0949
Final wR (F ²) indexes	0.1138	0.1748	0.1666

Compound	Ру-А	Py-Cs-BF ₄	Py-Cs-Br
CCDC	2024265	2024270	2024267
Empirical formula	$C_{21}H_{22.25}B_{0.38}Br_{0.6}F_{1.51}N$		C _{21.5} H ₂₃ BrClN ₂ O _{2.5} S
	₂ O _{0.28}	$C_{21}H_{21}BN_2O_2F_4S$	
Formula weight	388.21	452.27	497.01
Temperature/K	100.15	100.15	120
Crystal system	orthorhombic	monoclinic	triclinic
Space group	Pbca	$P2_1/c$	P-1
a/Å	15.183(8)	13.094(2)	8.1050(6)
b/Å	9.740(5)	8.1898(14)	12.2348(9)
c/Å	25.145(15)	18.731(3)	23.4041(16)
$\alpha/^{\circ}$	90	90	95.281(2)
β/°	90	98.965(4)	95.216(2)
γ/°	90	90	106.432(2)

Volume/Å ³	3719(4)	1984.1(6)	2199.9(3)
Z	8	4	4
$\rho_{calc}g/cm^3$	1.387	1.514	1.501
μ/mm ⁻¹	1.384	0.222	2.108
F(000)	1609.0	936.0	1016.0
Crystal size/mm ³	$0.356 \times 0.201 \times 0.09$	$0.354\times0.157\times0.112$	$0.354 \times 0.278 \times 0.1$
Radiation/Å	0.71073	0.71073	0.71073
$2\theta_{max}$ /°	61.322	61.068	61.322
Reflections collected	24415	47914	85969
Unique reflections	5700	6051	13535
Goodness-of-fit on F ²	1.066	1.008	1.010
Final R ₁ indexes	0.1082	0.0350	0.0427
Final wR (F ²) indexes	0.1947	0.0891	0.0813

References

- Foster, E. L.; Tria, M. C. R.; Pernites, R. B.; Addison, S. J.; Advincula, R. C. Soft Matter 2012, 8, 353–359.
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341.
- 3. Sheldrick, G. M. Acta Cryst. 2015, A71, 3–8.
- 4. Dias, F. B.; Penfold, T. J.; Monkman, A. P. Methods Appl. Fluoresc. 2017, 5, 012001.
- Yang, J.; Gao, H.; Wang, Y.; Yu, Y.; Gong, Y.; Fang, M.; Ding, D.; Hu, W.; Tang, B.
 Z.; Li, Z. Mater. Chem. Front. 2019, 3, 1391–1397.
- 6. Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
- 7. and, V. B.; Cossi, M. J. Phys. Chem. A. 1998, 102, 1995–2001.
- 8. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669-681.
- 9. Truong, T. N.; Stefanovich, E. V. Chem. Phys. Lett. 1995, 240, 253-260.
- 10. Liu, F.; Livshits, E.; Lochan, R. C.; Luenser, A.; Manohar, P.; Manzer, S. F.; Mao, S.-P.; Mardirossian, N.; Marenich, A. V.; Maurer, S. A.; Mayhall, N. J.; Neuscamman, E.; Oana, C. M.; Olivares-Amaya, R.; O'Neill, D. P.; Parkhill, J. A.; Perrine, T. M.; Peverati, R.; Prociuk, A.; Rehn, D. R.; Rosta, E.; Russ, N. J.; Sharada, S. M.; Sharma, S.; Small, D. W.; Sodt, A.; Stein, T.; Stueck, D.; Su, Y.-C.; Thom, A. J. W.; Tsuchimochi, T.; Vanovschi, V.; Vogt, L.; Vydrov, O.; Wang, T.; Watson, M. A.; Wenzel, J.; White, A.; Williams, C. F.; Yang, J.; Yeganeh, S.; Yost, S. R.; You, Z.-Q.; Zhang, I. Y.; Zhang, X.; Zhao, Y.; Brooks, B. R.; Chan, G. K. L.; Chipman, D. M.; Cramer, C. J.; Goddard, W. A.; Gordon, M. S.; Hehre, W. J.; Klamt, A.; Schaefer, H. F.; Schmidt, M. W.; Sherrill, C. D.; Truhlar, D. G.; Warshel, A.; Xu, X.; Aspuru-Guzik, A.; Baer, R.; Bell, A. T.; Besley, N. A.; Chai, J.-D.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Gwaltney, S. R.; Hsu, C.-P.; Jung, Y.; Kong, J.; Lambrecht, D. S.; Liang, W.; Ochsenfeld, C.; Rassolov, V. A.; Slipchenko, L. V.; Subotnik, J. E.; Van Voorhis, T.; Herbert, J. M.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M.; Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X.; Ghosh, D.; Goldey, M.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Khaliullin, R. Z.; Kus, T.; Landau, A.; Liu, J.; Proynov, E. I.; Rhee, Y. M.; Richard, R. M.; Rohrdanz, M. A.; Steele, R. P.; Sundstrom, E. J.; Woodcock, H. L.;

Zimmerman, P. M.; Zuev, D.; Ben Albrecht; Alguire, E.; Austin, B.; Beran, G. J. O.;
Bernard, Y. A.; Berquist, E.; Brandhorst, K.; Bravaya, K. B.; Brown, S. T.; Casanova,
D.; Chang, C.-M.; Chen, Y.; Chien, S. H.; Closser, K. D.; Crittenden, D. L.;
Diedenhofen, M.; Distasio, R. A.; Do, H.; Dutoi, A. D.; Edgar, R. G.; Fatehi, S.; Fusti-Molnar, L.; Ghysels, A.; Golubeva-Zadorozhnaya, A.; Gomes, J.; Hanson-Heine, M.
W. D.; Harbach, P. H. P.; Hauser, A. W.; Hohenstein, E. G.; Holden, Z. C.; Jagau, T.-C.; Ji, H.; Kaduk, B.; Khistyaev, K.; Kim, J.; Kim, J.; King, R. A.; Klunzinger, P.;
Kosenkov, D.; Kowalczyk, T.; Krauter, C. M.; Lao, K. U.; Laurent, A. D.; Lawler, K.

V.; Levchenko, S. V.; Lin, C. Y. Mol. Phys. 2015, 113, 184-215.