Electronic supplementary information

ⁿBu₂Sn(SⁿBu)₂ and ⁿBu₃SnEⁿBu (E = S or Se) - effective single source precursors for the CVD of SnS and SnSe thermoelectric thin films

Fred Robinson^a, Peter J. Curran^b, C. H. (Kees) de Groot^c, Duncan Hardie,^b Andrew L. Hector^a, Katherine Holloway^a, Ruomeng Huang^c, Daniel W. Newbrook,^c and Gillian Reid^a*

Figure S1- ¹H NMR spectrum of [SnⁿBu₃(SⁿBu)] (CDCl₃)

Figure S3- ¹¹⁹Sn{¹H} NMR spectrum of [SnⁿBu₃(SⁿBu)] (CDCl₃)

Figure S5- ${}^{3}C{}^{1}H$ NMR spectrum of [SnⁿBu₂(SⁿBu)₂] (CDCl₃)

Figure S6- $^{119}Sn\{^{1}H\}$ NMR spectrum of $[Sn^{n}Bu_{2}(S^{n}Bu)_{2}]$ (CDCl₃)

Figure S7- ¹H NMR spectrum of [SnⁿBu₃(SeⁿBu)] (CDCl₃)

Figure S8- ¹³C{¹H} NMR spectrum of [SnⁿBu₃(SeⁿBu)] (CDCl₃)

Figure S9- ⁷⁷Se{¹H} NMR spectrum of [SnⁿBu₃(SeⁿBu)] (CDCl₃) (insert shows an expanded view with the ^{117/119}Sn satellites clearly visible).

Figure S10- ¹¹⁹Sn{¹H} NMR spectrum of [SnⁿBu₃(SeⁿBu)] (CDCl₃) (insert shows an expanded view with the ⁷⁷Se satellites clearly visible)

Sample	Precursor	0%	Si%	S%	Sn%
Dep ⁿ 1 tile 1	(1)	7.8	1.2	36.4	54.6
Dep ⁿ 2 tile 1	(1)	-	-	40.2	59.8
Dep ⁿ 2 tile 2	(1)	-	-	39.9	60.1
Dep ⁿ 3 tile 1	(2)	6.6	1.3	40.8	51.3
Dep ⁿ 4 tile 1	(2)	-	0.7	44.2	55.0
Dep ⁿ 5 tile 1	(2)	13.4	24.1	31.2	31.2
Dep ⁿ 5 tile 2	(2)	12.3	12.5	37.2	38.1

Table S1: Energy dispersive X-ray analysis results for some SnS films (atom % values); (1) = $Sn^nBu_3(S^nBu)$; (2) = $Sn^nBu_2(S^nBu)_2$

Figure S11: Top down SEM images a) and b) of two thin films of sulfur deficient SnS deposited using (1) and c) a GIXRD pattern (black) for the film seen in b) matched to a bulk literature pattern (red).¹⁵

Sample	%C	%0	% Si	%Se	%Sn
dep ⁿ 1	-	11.3	29.4	29.1	30.2
dep ⁿ 2 tile 1	17.4	10.1	-	35.4	37.1
dep ⁿ 2 tile 2	-	7.54	4.2	44.4	43.9
dep ⁿ 3	11.7	7.1	-	38.9	42.3
dep ⁿ 4	12.2	8.0	7.1	37.5	35.2

Table S2: Energy dispersive X-ray analysis results for SnSe thin films (atom % values)