Electronic Supporting Information

Fabrication of microcapsule extinguishing agent with core-shell

structure for lithium-ions battery fire safety

Weixin Zhang^{1‡}, Lin Wu^{1‡}, Jinqiao Du², Jie Tian², Yan Li², Yuming Zhao², Hao Wu³,

Yunhui Zhong³, Yuan-Cheng Cao*1, Shijie Cheng¹

¹State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic

Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;

²Shenzhen Power Supply Co. Ltd., Shenzhen 518001, China;

³Zhejiang Landun Electronic New Material Technology Co. Ltd., Hangzhou 311418, China.

*Corresponding author: <u>vccao@hust.edu.cn</u>(Y.-C. Cao)

Fig. S1 Microencapsulated fire extinguishing agent as core-shell structure.

Fig. S2 Molecular formula of (A)Novec1230. (B)HFC.

Fig. S3 Photograph of MUF microcapsule solution. (A) without antifoaming agents. (B) with octanol as antifoaming agent and optical microscopy of (C) foam. (D) emulsion in microcapsule solution.

Fig. S4 Particle size analysis chart of N-H-microcapsule

	Weight percent of elements (%)			
	С	N	0	F
N-H-microcapsule	26.67	18.12	7.94	47.27
Cracked N-H-microcapsule	40.54	36.20	14.17	9.09

Table S1. Weight statistics of different elements of N-H-microcapsules and cracked N-H-microcapsule

Fig. S5 experimental model diagram of cooling by fire extinguishing agent heating plate

Fig. S6 Action on pouch cell wrapped in outside of plastic film for NCM523 battery.