Electronic Supplementary Material (ESI)

Remarkable synergy of borate and interfacial hole transporter on

BiVO₄ photoanodes for photoelectrochemical water oxidation

Qijun Meng^a, Biaobiao Zhang^{b,c*}, Hao Yang^a, Chang Liu^d, Yingzheng Li^d, Oleksandr Kravchenko^a, Xia Sheng^a, Lizhou Fan^a, Fusheng Li^d, Licheng Sun^{a,b,c,d*}

^a Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
^b Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024
Hangzhou,

China

^c Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024 Zhejiang, China

^d State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China

*Corresponding author Email: zhangbiaobiao@westlake.edu.cn lichengs@kth.se

Fig. S1. LSV curves for NiFeV/BiVO₄ photoanodes with a series of catalyst mass loading measured under AM 1.5G illumination in a 1.0 M potassium borate buffer at pH 9.3 (scan rate: 10 mV s^{-1}).

Fig. S2. UV-Vis diffuse spectra of B-BiVO₄ and NiFeV/B-BiVO₄ photoanodes, and the inset are corresponding Tauc plots

Fig. S3. XRD spectra of NiFeV LDH, $BiVO_4$, B- $BiVO_4$ and NiFeV/B- $BiVO_4$ photoanodes.

Fig. S4. FE-SEM images (upper) and EDX patterns (bottom) with corresponding element ratio of NiFeV LDHs.

Fig. S5. (a) The top-view and (b) cross-sectional SEM images of the bare $BiVO_4$ photoelectrode.

Fig. S6. XPS high-resolution spectra of pure NiFeV LDHs: (a) Ni 2p, (b) Fe 2p, (c) V 2p, (d) O 1s, and (e) the corresponding XPS survey.

Fig. S7. LSV curves of $BiVO_4$, $B-BiVO_4$, $NiFeV/BiVO_4$, and $NiFeV/B-BiVO_4$ photoanodes in dark in a 1.0 M potassium borate buffer at pH 9.3 (scan rate: 10 mV s⁻¹).

Fig. S8 Mott-Schottky (MS) plots of photoanodes in dark at (a) 0.5 kHz and (b)1 kHz.

Fig. S9. LSV curves of $BiVO_4$, B-BiVO₄, NiFeV/BiVO₄, and NiFeV/B-BiVO₄ photoanodes under AM 1.5G illumination in a 1.0 M potassium borate buffer (pH 9.3) with 0.2 M Na₂SO₃ (scan rate: 10 mV s⁻¹).

Fig. S10. The LSV measurements of NiFeV/FTO in **(a)** 1.0 M potassium borate buffer (pH 9.3) and **(b)** 1.0 M NaOH solution (pH 13.6) at a scan rate of 50 mV s⁻¹ with 95% iR compensation.

Fig. S11. The surface charge transfer efficiency, in terms of $k_{trans}/(k_{trans}+k_{rec})$ for the BiVO₄ and NiFeV/B-BiVO₄ photoanodes obtained from IMPS analysis.

Fig. S12. (a) LSV curves of NiFeV/FTO in 0.1 M sodium borate H_2O (solid line) and D_2O (dash line) solutions, respectively (scan rate of 10 mV s⁻¹ and 95% iR compensation); and the inset exhibits the corresponding KIEs at different overpotentials. (b) BiVO₄, (c) B-BiVO₄, (d) NiFeV/BiVO₄ and (e) NiFeV/B-BiVO₄ photoanodes tested under light illumination in 0.1 M sodium borate H_2O (solid line) and D_2O (dash line) solutions, respectively. (f) Corresponding KIE values of photoanodes *versus* overpotential.

Fig. S13. *J*-*t* curves of BiVO₄ and B-BiVO₄ tested in a 1.0 M potassium borate buffer (pH 9.3) at 0.6 V_{RHE} and 1.23 V_{RHE} , respectively.

Fig. S14. The J-t curve of NiFeV/B-BiVO₄ tested in a 1.0 M potassium borate buffer (pH 9.3) at 0.6 V_{RHE} for 24 h.

Fig. S15. Oxygen evolutions detected by gas chromatography and calculated from photocurrent during the photolysis of NiFeV/B-BiVO₄ photoanode at 0.6 V_{RHE} .

Fig. S16. The top-view SEM images of NiFeV/B-BiVO₄ at different magnifications after *J*-*t* testing at 0.6 V_{RHE} for 8 h.

Fig. S17. (a) LSV curves of BiVO₄, B-BiVO₄, NiFe/BiVO₄, and NiFe/B-BiVO₄ photoanodes under AM 1.5G illumination in a 1.0 M potassium borate buffer at pH 9.3 (scan rate: 10 mV s⁻¹); (b) ABPE curves of photoanodes calculated from LSV curves; (c) Surface charge transfer efficiency ($\eta_{surface}$) of photoanodes obtained from LSV curves of water oxidation and sulfite oxidation; (d) Long-term *J*-*t* curves at a constant bias of 0.6 V_{RHE}.

Fig. S18. **(a)** LSV curves of BiVO₄, B-BiVO₄, NiV/BiVO₄, and NiV/B-BiVO₄ photoanodes under AM 1.5G illumination in a 1.0 M potassium borate buffer at pH 9.3 (scan rate: 10 mV s⁻¹); **(b)** ABPE curves of photoanodes calculated from LSV curves; **(c)** Surface charge transfer efficiency ($\eta_{surface}$) of photoanodes obtained from LSV curves of water oxidation and sulfite oxidation; **(d)** Long-term *J*-*t* curves at a constant bias of 0.6 V_{RHE}.

-					
BiVO ₄ photoanode	LDH co-catalyst loading method	J _{ph} @1.23 V _{RHE} (mA·cm ⁻²)	Onset potential (V _{RHE})	Test condition ^[a]	Year
NiFeV/B-BiVO ₄	Drop casting (10 μg cm ⁻²)	4.6	0.21	1.0 М КВі, рН 9.3	This work
CoAl/BiVO ₄ ¹	Electrodeposition	3.5	0.41	0.5 M Na₂SO₄, pH 7.35	2021
NiFeY/BiVO ₄ ²	Hydrothermal	5.2	0.31	1.0 М КВі, рН 9.5	2020
Fe _x Ni _{4-x} -H/BiVO ₄ ³	Electrodeposition	3.65	0.53	0.5 M Na₂SO₄, pH 7	2020
ZnCoV/BiVO ₄ ⁴	Electrodeposition	2.55	0.33	0.1 M NaBi, pH 9.4	2020
NiFe/rGO/BiVO4 ⁵	Electrodeposition	3.26	0.4	1.0 М КВі, pH 9.33	2020
CoCe/BiVO ₄ ⁶	Hydrothermal	3.74	0.2	0.5 М КВі, рН 11	2020
NiCo/BiVO ₄ ⁷	Electrodeposition	2.95	0.4	0.5 M Na ₂ SO ₄ , pH 7.3	2020
CoMn/BiVO ₄ ⁸	Electrodeposition	2.69	0.31	0.5 М КРі, рН 7	2020
CoAl/GDY/BiVO ₄ ⁹	Hydrothermal	3.15	0.46	0.1 M Na ₂ SO ₄ , pH 6.8	2019
NiOOH/BP/BiVO ₄ ¹⁰	photodeposition	4.48	0.4	0.5 М КРі pH 7.1	2019
NiFe/BiVO ₄ ¹¹	Drop casting	1.2	0.3	0.1 М КВі, рН 9.2	2018
CDs/NiFe/BiVO ₄ ¹²	Electrodeposition	2.84	0.5	0.5 M PBS, pH 7).	2018
CoPO ₃ /pGO/NiFe/BiVO ₄ ¹³	Hydrothermal	4.45	0.17	1.0 М КВі, рН 9	2018
NiFe/BiVO4 ¹⁴	Hydrothermal	2.49	0.62	0.5 M Na ₂ SO ₄ , pH 7.3	2018
β-FeOOH/BiVO4 ¹⁵	Immersion	4.3	0.5	0.2 М Na ₂ SO ₄ pH 7	2018
CoOOH/BiVO ₄ ¹⁶	Spin coating	4.0	0.2	0.2 М КРі рН 7	2018
NiFe/BiVO ₄ ¹⁷	Hydrothermal	4.02	0.40	0.1 М КНСО ₃ , рН 8.6	2017
CoLa/BiVO ₄ ¹⁸	Electrodeposition	2.02	0.19	0.5 M KPi, pH 7	2017

Table S1. PEC performance of LDH/BiVO4 based photoanodes.

NiFe/BiVO4 ¹⁹	NiFe/BiVO ₄ ¹⁹ Electrodeposition		0.32	0.5 M Na₂SO₄, pH ~7	2017
CoFe/BiVO ₄ ²⁰	Electrodeposition	2.48	0.23	0.5 М КРі, рН 7	2017
Ferrihydrite/BiVO ₄ ²¹	Hydrothermal	4.78	0.25	0.4 М NaBi pH 9	2017
QD/CoAl/BiVO ₄ ²²	Hydrothermal	2.23	0.3	0.1 М КРі, рН 7	2016
CoAl/BiVO ₄ ²³	Hydrothermal	1.1	0.41	0.1 М КРі, рН 7	2015
NiOOH/FeOOH/BiVO4 24	Photodeposition	4.5	0.23	0.5 М КРі pH 7	2014

^[a] NaBi= sodium borate; KPi= potassium phosphate; KBi= potassium borate; PBS=phosphate buffer solution.

* Photocurrent density or onset potential was obtained from the J-V curves in the corresponding reference paper.

Table S2. Fitted results of the EIS curves in Fig. 3g

	BiVO ₄	B-BiVO ₄	NiFeV/BiVO ₄	NiFeV/B-BiVO ₄
R_s/Ω	55.3	57.2	54.9	54.4
R_{ct}/Ω	1398.2	518.1	372.6	289.2

REFERENCES

- 1. P. Yue, H. She, L. Zhang, B. Niu, R. Lian, J. Huang, L. Wang and Q. Wang, *Appl. Catal. B: Environ.*, 2021, **286**, 119875.
- D. He, R.-T. Gao, S. Liu, M. Sun, X. Liu, K. Hu, Y. Su and L. Wang, ACS Catal., 2020, 10, 10570-10576.
- 3. X. Ning, P. Du, Z. Han, J. Chen and X. Lu, *Angew. Chem. Int. Ed.*, 2021, **60**, 3504-3509.
- 4. T.-G. Vo, K.-F. Chang and C.-Y. Chiang, J. Catal., 2020, **391**, 336-345.
- H. Chen, S. Wang, J. Wu, X. Zhang, J. Zhang, M. Lyu, B. Luo, G. Qian and L. Wang, *J. Mater. Chem.* A, 2020, 8, 13231-13240.
- 6. T. K. Sahu, S. Alam, D. Gogoi, N. R. Peela and M. Qureshi, *ACS Applied Energy Materials*, 2020.
- H. She, P. Yue, X. Ma, J. Huang, L. Wang and Q. Wang, *Appl. Catal. B: Environ.*, 2020, 263, 118280.
- 8. F. Zhao, N. Li, Y. Wu, X. Wen, Q. Zhao, G. Liu and J. Li, *Int. J. Hydrogen Energy*, 2020, **45**, 31902-31912.
- J. Li, X. Gao, Z. Li, J. H. Wang, L. Zhu, C. Yin, Y. Wang, X. B. Li, Z. Liu and J. Zhang, Adv. Funct. Mater., 2019, 29, 1808079.
- 10. K. Zhang, B. Jin, C. Park, Y. Cho, X. Song, X. Shi, S. Zhang, W. Kim, H. Zeng and J. H. Park, *Nat. Commun.*, 2019, **10**, 2001.
- 11. T. S. Sinclair, H. B. Gray and A. M. Müller, *Eur. J. Inorg. Chem.*, 2018, **2018**, 1060-1067.
- 12. X. Lv, X. Xiao, M. Cao, Y. Bu, C. Wang, M. Wang and Y. Shen, *Appl. Surf. Sci.*, 2018, **439**, 1065-1071.
- 13. S. Ye, C. Ding, R. Chen, F. Fan, P. Fu, H. Yin, X. Wang, Z. Wang, P. Du and C. Li, *J. Am. Chem. Soc.*, 2018, **140**, 3250-3256.
- 14. Q. Wang, T. Niu, L. Wang, J. Huang and H. She, *Chinese J. Catal.*, 2018, **39**, 613-618.
- 15. Z. Beibei, W. Lei, Z. Yajun, D. Yong and B. Yingpu, *Angew. Chem. Int. Ed.*, 2018, **57**, 2248-2252.
- 16. F. Tang, W. Cheng, H. Su, X. Zhao and Q. Liu, ACS Appl. Mater. Interfaces, 2018, **10**, 6228-6234.
- 17. Y. Huang, Y. Yu, Y. Xin, N. Meng, Y. Yu and B. Zhang, *Sci. China Mater.*, 2017, **60**, 193-207.
- 18. M. Chhetri, S. Dey and C. N. R. Rao, *ACS Energy Lett.*, 2017, **2**, 1062-1069.
- 19. Y. Zhu, J. Ren, X. Yang, G. Chang, Y. Bu, G. Wei, W. Han and D. Yang, *J. Mater. Chem. A*, 2017, **5**, 9952-9959.
- W. Liu, H. Liu, L. Dang, H. Zhang, X. Wu, B. Yang, Z. Li, X. Zhang, L. Lei and S. Jin, *Adv. Funct. Mater.*, 2017, 27, 1603904.
- 21. F. Yu, F. Li, T. Yao, J. Du, Y. Liang, Y. Wang, H. Han and L. Sun, *ACS Catal.*, 2017, **7**, 1868-1874.
- 22. Y. Tang, R. Wang, Y. Yang, D. Yan and X. Xiang, *ACS Appl. Mater. Interfaces*, 2016, **8**, 19446-19455.
- 23. W. He, R. Wang, L. Zhang, J. Zhu, X. Xiang and F. Li, J. Mater. Chem. A, 2015, **3**, 17977-17982.
- 24. T. W. Kim and K.-S. Choi, *Science*, 2014, **343**, 990-994.