Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2021

Electronic Supplemental Information

for

A proton conductive hydrogen-bonded framework incorporating

18-crown-6-ether and dicarboxy-o-terphenyl moieties

Xin Chen,^a Kiyonori Takahashi,^{a,b}* Kenta Kokado,^{a,b} Takayoshi Nakamura,^{a,b}* Ichiro Hisaki^{a,b,c}*

^a Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan.

^{b.} Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-ku, Sapporo, 001-0020, Japan

^{c.} Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka, 560-8531, Japan

Contents.

Section 1. General

Section 2. Synthesis of Compounds

Section 3. Crystallography

Section 4. Impedance Spectroscopy

Section 5. ¹H and ¹³C NMR Spectra

Section 6. References

1. General

Materials. All the chemicals used as starting materials, reagents and solvents were purchased from commercial suppliers and used as received without further purification. Analytical thin layer chromatography (TLC) was carried out on aluminum sheets coated with silica gel (Kieselgel 60F₂₅₄, Merck). Column chromatographic purifications were performed using silica gel (63-200 µm, Merck and 64-210 µm, Wakosil.). Unless stated otherwise, reported yields refer to analytically pure samples.

Spectroscopy. Nuclear magnetic resonance (NMR) spectra were recorded in CDCl₃ on AV 400 MHz JEOL ECX-400 NMR spectrometers. Chemical shifts are reported in δ ppm relative to solvent peak (¹H NMR: δ 7.26 ppm and 2.50 ppm for CDCl₃ and DMSO-d₆, respectively; ¹³C NMR: δ 77.16 ppm and 39.52 ppm for CDCl₃ and DMSO-*d*₆, respectively) with peak multiplicities described as singlet (s), broad singlet (br. s), doublet (d), triplet (t), quartet (q) and multiplet (m) in ¹H NMR spectra.

Thermal Stability. Thermogravimetric analysis (TGA) was conducted using a Rigaku Thermo Plus TG8120 with a heating rate of 5 K/min under nitrogen.

Powder X-Ray Diffraction Patterns (PXRD). PXRD were measured with a Rigaku RINT2100 in the 2θ region of 5 - 50°. The measurements were performed with Cu K_{α} radiation ($\lambda = 1.5418$ Å) at scanning rate of $1.2^{\circ} \cdot \min^{-1}$ under an applied electric voltage and current of 40 KV and 40 mA, respectively.

Crystal Structure Determination. Single crystalline X-ray diffraction data was collected by Rigaku MicroMax-007HF diffractometer with a Pilatus 200K detector and Cu K_{α} radiation ($\lambda = 1.54184$ Å) at 223 K. Analytical and multi-scan absorption corrections were applied to the reflection data. A single crystal was mounted on MicroMountsTM tip (MiTeGen) with Paratone[®] 8277 (Hampton Research). Data collection, cell refinement, and data reduction were carried out with Crysalis ^{PRO} (Rigaku Oxford Diffraction, 2017). The initial structure was solved by using SHELXT, and structural refinement was performed by using full-matrix least-squares techniques on F^2 using Crystal structure software (Rigaku). Anisotropic refinement was applied to all atoms except for hydrogens. SQUEEZE function equipped in the PLATON program was used to remove severely disordered solvent molecules in voids. These data are provided free of charge in The Cambridge Crystallographic Data Centre (CCDC-2057700, 2078832, 2078834, 2078835).

Impedance Spectroscopy under humid condition. Frequency-dependent impedance spectra were measured using an impedance analyzer 4294A (Agilent) with four-probe AC impedance method at a frequency range from $10^{2.5}$ to 10^6 Hz. The crystalline sample was powdered with agate milk stick and pelletized with a shaper. Gold paste (No. 8556, Tokuriki Chemical Research Co., Ltd.) and 30 µm ϕ gold wires (Nilaco Corp.) were used for electrical contacts between sample and electrical wire from the device. Temperature was controlled by water bath with pipe heater (AW-1105, Hakko Electric

Co.,Ltd) and temperature controller (TC-3000A, As One). The impedance was measured in a closed glass cell containing a saturated KCl solution and humidity was monitored by humidity sensor (SHT31-DIS, Senserion). Data fitting is carried out by using EIS Spectrum Analyser.

Section 2. Synthesis of compounds

Scheme S1. Synthesis of **1CT-18C6** and **2CT-18C6**. Reaction conditions: i) 4-(methoxycarbonyl)phenylboronic acid, Pd(PPh₃)₄, K₂CO₃, THF, water, reflux; ii) NaOH_{aq}. THF, iii) HCl.

4,5-Dibromodibenzo-18-crown-6.^[S1] Benzo[18]crown-6 ether (2.00 g, 6.40 mmol) was dissolved in acetic acid (80 ml). Bromine (5.00 g, 31.3 mmol) was added to the solution, and the mixture was stirred for 12 h at 85 °C. After cooling the solution, the orange powder was filtered and washed with water, $Na_2S_2O_3(aq)$, MeOH (two times for each) to give 4,5-Dibromodibenzo-18-crown-6 (2.43 g, 81%) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.07 (s, 2H), 4.12 (d, J = 5.7 Hz, 4H), 3.92 (d, J = 5.6 Hz, 4H), 3.77 (d, J = 6.0 Hz, 4H), 3.76-3.64 (m, 8H); ¹³C NMR: (100 MHz, CDCl₃): δ 148.56, 118.17, 115.37, 70.93, 70.74, 70.69, 69.40, 69.24 ppm.

4,5-Dibenzoic ester benzo-18-crown-6 derivative 1. 4,5-dibromobenzo-18-crown-6 (0.80 g, 1.7 mmol), K_2CO_3 (0.71 g, 5.1 mmol) and Pd(PPh₃)₄ (0.13 g, 0.11 mmol) were dissolved in THF (100 ml) and stirred for 15 min. 4-methoxycarbonylphenyl boronic acid (0.92 g, 5.1 mmol), dissolved in methanol (30 ml), was added to the solution and stirred for 48 h under reflux condition. After being cooled to the room temperature, the mixture was concentrated in a rotary evaporator, extracted with chloroform, washed with water and dried over anhydrous MgSO₄. The product was purified with column chromatography (silica gel, chloroform) to give **1** (0.71 g, 72%) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 8.4 Hz, 4H), 7.13 (d, J = 8.4 Hz, 4H), 6.93 (s, 2H), 4.27-4.20 (m, 4H), 3.98-3.89 (m, 4H), 3.88 (s, 6H), 3.82-3.66 (m, 12H) ppm; ¹³C NMR: (100 MHz, CDCl₃): δ 166.99, 148.60, 145.84, 132.58, 129.99, 129.41, 128.24, 115.60, 69.91, 69.10, 52.15.

1CT-18C6. To a solution of **1** (0.70 g, 1.2 mmol) dissolved in THF (20 ml) was added 10% NaOH_{aq} (10 ml). After stirred at 65 °C for 48 h, 6 M HCl aqueous solution was added to the organic layer until it became neutral. The product was collected by centrifugation, washed with water for three time, and dried in vacuo to give **1CT-18C6** (0.51 g, 77 %) as a white solid.

¹H NMR(400 MHz, DMSO): δ 7.74 (d, J = 7.9 Hz, 4H), 7.17 (d, J = 7.9 Hz, 4H), 7.00 (s, 2H), 4.21-4.14 (m, 4H), 3.75 (d, J = 5.9 Hz, 4H), 3.60-3.56 (m, 4H), 3.53 (d, J = 5.9 Hz, 4H), 3.50 (s, 4H) ppm; ¹³C NMR: (100 MHz, DMSO- d_6) δ 167.7, 148.4, 145.7, 132.0, 130.5, 129.6, 129.4, 115.3, 70.29, 70.25, 69.1, 68.6 ppm; ESI-MS *m/z* calc. for [M]⁺ C₃₀H₃₂O₁₀: 552.19; found: 552.20.

4,4',5,5'-Tetrabromodibenzo-18-crown-6.^[S1] Dibenzo[18]crown-6 ether (1.61 g, 4.47 mmol) was dissolved in acetic acid (50 ml). Bromine (5.00 g, 31.3 mmol) was added to the solution, and the mixture was stirred for 12 h at 85 °C. After cooling the solution, the orange powder was filtered and washed with water, Na₂S₂O₃(aq), MeOH (two times for each) to give 4,4',5,5'-tetrabromodibenzo-18-crown-6 (2.61 g, 86%) as white residue.

¹H NMR (400 MHz, CDCl₃): 7.03 (s, 4H), 4.08 (s, 8H), 3.96 (s, 8H). ¹³C NMR (100 MHz, CDCl₃): δ 148.67, 117.95, 115.21, 69.72, 69.08 ppm.

4,4',5,5'-Terabenzoic ester dibenzo-18-crown-6 derivative 2. 4,4',5,5'-tetrabromodibenzo-18crown-6 (4.05 g, 5.99 mmol), K₂CO₃ (4.16 g, 30.10 mmol) and Pd(PPh₃)₄ (0.47 g, 0.41 mmol) were dissolved in THF (100 ml) and stirred for 15 min. 4-methoxycarbonylphenyl boronic acid (5.39 g, 30.0 mmol), dissolved in methanol (50 ml), was added to the solution and stirred for 48 h under reflux condition. After being cooled to the room temperature, the mixture was concentrated in a rotary evaporator, extracted with chloroform, washed with water and dried over anhydrous MgSO₄. The product was purified with column chromatography (silica gel, chloroform) to give **2** (4.11 g, 76%) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.4 Hz, 8H), 7.13 (d, J = 8.4 Hz, 8H), 6.94 (s, 4H), 4.26 (t, J = 4.5 Hz, 8H), 4.07 (t, J = 4.6 Hz, 8H), 3.88 (s, 12H) ppm; ¹³C NMR: (100 MHz, CDCl₃) δ 167.02, 148.71, 145.82, 132.71, 130.00, 129.44, 128.27, 115.97, 70.03, 69.31, 52.19 ppm.

2CT-18C6. To a solution of **2** (1.07 g, 1.19 mmol) dissolved in THF (30 ml) was added 10 % NaOH_{aq} (10 ml). After stirred at 60 °C for 48 h, 6 M HCl aqueous solution was added to the organic layer until it became neutral. The product was collected by centrifugation, washed with water for three time, and dried in vacuo to give **2CT-18C6** (0.73 g, 73 %) as a white solid.

¹H NMR(400 MHz, DMSO-*d*₆): δ 7.75 (d, *J* = 7.9 Hz, 8H), 7.19 (d, *J* = 7.9 Hz, 8H), 7.00 (s, 4H), 4.22-

4.14 (m, 8H), 3.89-3.85 (m, 8H) ppm; ¹³C NMR: (100 MHz, DMSO- d_6) δ 167.67, 147.93, 145.76, 131.89, 130.52, 129.60, 129.23, 114.43, 69.13, 68.09 ppm; ESI-MS *m*/*z* calc. for [M+Na]⁺C₄₈H₄₀O₁₄: 840.22; found: 840.24.

Section 3. Crystallography

	1CT-18C6-I	2CT-18C6-I	2CT-18C6-II	2CT-18C6-III			
Empirical formula	C ₃₀ H ₃₆ O ₁₃	C58.5H64.5N3.5Na O17.5	C57H60N3NaO17	C ₄₈ H ₄₂ O ₁₇			
Guest species	H ₂ O	Na ⁺ , DMF	Na ⁺ , DMF	H ₂ O			
Formula weight	604.59	1119.62	1082.07	890.81			
Temperature/K	223	293	293	298			
Crystal system	Monoclinic	triclinic	triclinic	orthorhombic			
Space group	$P2_1/n$	<i>P</i> -1	<i>P</i> -1	$Cmc2_1$			
<i>a</i> / Å	13.6633(2)	11.3113(2)	13.1094 (8)	27.4687(10)			
b / Å	8.2601(1)	13.4267(2)	25.3405(16)	20.3236(8)			
<i>c</i> / Å	26.8789(6)	21.7047(4)	26.7457(16)	8.0251(6)			
α/°	90	104.103(2)	105.281(5)	90			
β/°	90.208(2)	95.2670(10)	90.128(5)	90			
γ / °	90	111.048(2)	91.834(5)	90			
V / Å ³	3033.54(9)	2924.57(10)	8565.8(9)	4480.1(4)			
Ζ	4	2	6	4			
F (000)	1280	1138	3408	1864			
F ²	1.029	1.059	0.901	1.034			
R_1 a, w R_2 b[I >	0.059, 0.184	0.061,0.209	0.081, 0.352	0.094, 0.288			
2σ(I)]							
CCDC No.	2057700	2078832	2078834	2078835			
* ${}^{a}R_{I} = \sum F_{o} - F_{c} / \sum F_{o} $. ${}^{b}wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}$							

 Table S1. Crystallographic parameters of 1CT-18C6 and 2CT-18C6.

Fig. S1 Crystal structure of 2CT-18C6-II.

Section 4. Impedance Spectroscopy

Nyquist plots^[S2-S4]

1CT-18C6-I

Fig. S2 (a) Nyquist plot for **1CT-18C6-I** at 46, 55, and 65 °C under 85 RH% humidity and (b) equivalent circuit models for the fitting to data of 46 °C (top) and 55 and 65 °C (bottom).

T/°C	R_1 / Ω	C_1 or CPE_1 / F n1	<i>n</i> ₁	R_2 / Ω	<i>C</i> ₂ / F
46	1.148×10 ⁷	2.025×10 ⁻¹²	0.822		
55	5.4385×10 ⁶	1.639×10 ⁻¹²	0.839	3.297×10 ⁷	3.538×10 ⁻¹²
65	4.420×10 ⁶	1.329×10 ⁻¹²	0.852	3.718×10 ⁷	1.329×10 ⁻¹²

Table S2. Fitting parameters of equivalent circuit model at each temperature for 1CT-18C6-I.

4,4'-Dicarboxy-o-tephenyl (CT)

Fig. S3 (a) Nyquist plot for CT at 46, 55, and 68 °C under 85 RH% humidity and (b) equivalent circuit models for the fitting to data of 46 °C (top) and 55 and 68 °C (bottom).

Table S3.	Fitting	parameters	of	equival	ent	circuit	model	at e	each	temperature	for	4,4'-	Dicarbo	ху-о-
tephenyl (C	CT).													

T / °C	R_1 / Ω	C_1 or CPE_1 / F^{n_1}	<i>n</i> 1	R_2 / Ω	C_2 or CPE_2 / F ^{$n1$}	<i>n</i> ₂
46	4.594×10 ⁶	1.472×10 ⁻¹³		1.491×10 ⁷	1.604×10 ⁻¹²	
55	6.584×10 ⁵	8.921×10 ⁻⁹	0.433	1.776×10^{6}	9.584×10 ⁻¹⁰	
68	2.876×10 ⁵	4.026×10 ⁻¹⁰	0.631	1501×10 ⁶	3.793×10 ⁻⁸	0.451

Dibenzo[18]crown-6 (DB18C6)

Fig. S4 (a) Nyquist plot for DB18C6 at 46, 63, and 75 °C under 85 RH% humidity and (b) equivalent circuit models for the fitting to data.

T / °C	R_1 / Ω	<i>CPE</i> ₁ / F ^{<i>n</i>1}	<i>n</i> ₁
46	3.492×10 ⁸	1.231×10 ⁻¹¹	0.727
63	2.071×10 ⁸	5.191×10 ⁻¹²	0.766

1.124×10⁻¹¹

0.740

8.473×10⁷

75

Table S4. Fitting parameters of equivalent circuit model at each temperature for DB18C6.

2CT-18C6-III

Fig. S5 (a) Nyquist plot for **2CT-18C6-III** at 25, 63, 66, and 75 °C under 85 RH% humidity and (b) equivalent circuit models for the fitting to data.

Table S5. Fitting parameters of equivalent circuit model at each temperature for 2CT-18C6-III.

T/°C	R_1 / Ω	CPE_1 / F^{n1}	n_1	R_2 / Ω	<i>CPE</i> ₂ / F ^{<i>n</i>1}	<i>n</i> ₂
21	1.138×10 ⁵	2.591×10 ⁻¹¹	0.803	2.818×10 ⁶	3.788×10 ⁻⁷	0.312
38	1.040×10 ⁵	5.245×10 ⁻¹¹	0.764	1.000×10 ¹⁰	4.666×10 ⁻⁷	0.304
66	6.712×10 ⁴	3.903×10 ⁻¹⁰	0.642	6.474×10 ⁵	6.876×10 ⁻⁸	0.456
70	6.432×10 ⁴	3.940×10 ⁻¹⁰	0.651	1.895×10 ⁶	4.170×10 ⁻¹⁰	0.346

Activation Energy calculation based on Arrhenius law.

Fig. S6 Arrhenius plot of proton conductivity under 85 RH%.

Table S6. Pre-exponential Factor (σ_0) and activation energies (E_a) of proton conductivity for **1CT-18C6-III**, CT, and DB18C6 under 85 RH%.

	σ_0	$E_{\rm a}$ / kJ mol ⁻¹	E_a / eV
1CT-18C6-I	2.02×10 ⁻⁵	44.8	0.354
2CT-18C6-III	1.66×10 ⁻²	13.4	0.140
СТ	2.04×10 ⁻²¹	110.9	1.150
DB18C6	1.70×10 ⁻⁹	43.6	0.452

Section 5. ¹H and ¹³C NMR Spectra

Fig. S7 ¹H NMR (400 MHz, CDCl₃) spectrum of 4,5-Dibromodibenzo-18-crown-6.

Fig. S8 ¹³C NMR (100 MHz, CDCl₃) spectrum of 4,5-Dibromodibenzo-18-crown-6.

Fig. S9 1 H NMR (400 MHz, CDCl₃) spectrum of 1.

Fig. S10¹³C NMR (100 MHz, CDCl₃) spectrum of 1.

Fig. S11 ¹H NMR (400 MHz, DMSO- d_6) spectrum of 1CT-18C6.

Fig. S12 13 C NMR (100 MHz, DMSO- d_6) spectrum of 1CT-18C6.

Fig. S13 ¹H NMR (400 MHz, CDCl₃) spectrum of 4,4',5,5'-Tetrabromodibenzo-18-crown-6.

Fig. S14 ¹³C NMR (100 MHz, CDCl₃) spectrum of 4,4',5,5'-Tetrabromodibenzo-18-crown-6.

Fig. S15 ¹H NMR (400 MHz, CDCl₃) spectrum of 2.

Fig. S16¹³C NMR (100 MHz, CDCl₃) spectrum of 2.

Fig. S17 ¹H NMR (400 MHz, DMSO- d_6) spectrum of 2CT-18C6.

Fig. S18 ¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 2CT-18C6.

Section 6. References

S1. Géraud Dubois, Catherine Reyé, Robert J. P. Corriu and Claude Chuit, J. Mater. Chem., 2000, 10, 1091–1098

S2. Y. Tian, G. Liang, T. Fan, J. Shang, S. Shang, Y. Ma, R. Matsuda, M. Liu, M. Wang, L. Li and S.Kitagawa, Chem. Mater., 2019, 31, 8494–8503.

S3. P. Rought, C. Marsh, S. Pili, I. P. Silverwood, V. G. Sakai, M. Li, M. S. Brown, S. P. Argent, I. Vitorica Yrezabal, G. Whitehead, M. R. Warren, S. Yang and M. Schröder, Chem. Sci., 2019, 10, 1492–1499.

S4. D.-W. Lim and H. Kitagawa, Chem. Rev., 2020, 120, 8416–8467.