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1 General 

 

All chemicals were used as supplied. THF was dried over sodium with benzophenone as indicator 

and distilled. Chromatographic separations were performed on ThoMar OHG silica gel 60Å (40–63 

μm). Thin-layer chromatography was performed on Merck TLC Silica gel 60 F254 and visualized by 

UV (254 nm), KMnO4 and/or phosphomolybdic acid. 1H, 19F and 13C NMR spectra were recorded 

on Bruker Avance 400 spectrometer. Residual solvent peaks were used as internal standards [1]. 

Chemical shifts are quoted in ppm using the following abbreviations: s, singlet; d, doublet; t, triplet; 

qt, quartet; p, pentet; m, multiplet; or a combination thereof. 

 

2 Preparation of TAL-2 catalyst materials 

 

Synthesis of TAL–2. CoCl2
.6H2O (3.96 g, 16.64 mmol, 1.0 equiv) was added dropwise into a 

mixture of 1H-benzo[d]imidazole-5,6-diol (5.00 g, 33.30 mmol, 2.0 equiv) in 25% aq. 

NH3/DMF/EtOH/water (4:10:10:15), the resulting solution was left to stir at RT. After 24 h, it was 

filtered, washed with EtOH and dried to give the desired material as a dark green solid (6.28 g). 

  

Synthesis of TAL–2 derived catalyst materials. TAL–2 was carbonized at optimized temperature 

of 800, 900 or 1000 °C under N2 for 2 h (rapid heat, rapid cooling). Carbonized materials were 

suspended in 0.5 M HNO3, stirred for 8 h at 50 °C, filtered, and recarbonized under N2 at the same 

temperature (2 h) to give final catalyst materials. The resulting powders are designated as TAL–2–

800, TAL–2–900 and TAL–2–1000. 
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3 Morphological and physical characterization 

 

HRTEM. TEM measurements were performed using a JEOL-2200FS FEG (S)TEM equipped with 

Schottky field emission gun (FEG) and operating at accelerating voltage of 200 kV [2]. TEM 

samples were dispersed in 2-propanol and sonicated for 10 minutes. The resulted suspension was 

pipetted on a 200 mesh copper grid covered by carbon film. 

 

SEM. Scanning electron microscopy (SEM) measurements were performed using Zeiss Ultra–55. 

Sample powder was deposited onto the carbon tape. In order to improve the conductivity of initial 

TAL–2 sample, it was covered with a thin gold layer. 

 

XPS. XPS measurements were performed by SCENTA SES-100 spectrometer equipped with a 300 

W non-monochromatic Mg Kα X-ray source (incident energy = 1253.6 eV) and electron take-off 

angle 90º. During XPS spectra collection, analysis chamber pressure was below 10–9 Torr. For 

collecting survey spectra and high-resolution XPS spectra step sizes of 0.5 eV and 0.1 eV were used, 

respectively. Pass energy was 200 eV in both cases. XPS sample was prepared by coating GC plate 

with catalyst suspension in 2-propanol. For fitting of peaks in high-resolution N1s, C1s and Co2p 

spetra, CasaXPS (2.3.18) software was used. 

 

XRD. The XRD patterns for the TAL-2 samples were recorded on a Bruker D8 Advance 

diffractometer using Ni filtered Cu Kα radiation and LynxEye line detector. Scanning steps were 

0.013º 2θ from 5º to 90º, 2θ and total counting time was 173 s/step. The scan axes were 2θ/θ. 

 

Nitrogen physisorption. Before measurements, the samples were dried for 12 h in vacuum at 150 

°C. Low-temperature nitrogen adsorption was done at the boiling temperature of nitrogen (77 K) by 
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using the NOVAtouch LX2 (Quantachrome Instruments). Specific surface area (SaBET) of carbon 

samples was calculated from N2 adsorption corresponding to the BET theory [3] in the P/P0 interval 

of 0.02–0.2, the total pore volume (Vtot) was calculated at P/P0 of 0.97. The calculations of pore size 

distribution (PSD) and specific surface area (Sadft) from N2 isotherms were done by using a quenched 

solid density functional theory (QSDFT) equilibria model for slit type pores. All calculations were 

done using TouchWin 1.11 software (Quantachrome Instruments). 

 

MP–AES. The samples were dissolved with Anton Par Multiwave PRO microwave digestion 

system using NXF100 digestion vessels (PTFE–TFM liner) in 8 N rotor prior to analysis. 10 mg of 

sample was weighed into PTFE vessels into which 4 ml of 69 % HNO3 (Carl Roth ROTIPURAN 

Supra) and 2 ml of H2O2 (Sigma–Aldrich TraceSelect) were sequentially and slowly added. After 

the initial reaction had subsided the vessels were capped and digested in the microwave unit at 240 

°C and 45–50 bar pressure. After digestion, the samples were diluted using 2 % HNO3 (prepared 

from 69 % HNO3) to final concentration of around 4 mg/L and analyzed using Agilent MP–AES 

4210. Cobalt was measured at Co 340.512 nm. 
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Figure S1. SEM micrographs of TAL–2, TAL–2–800, TAL–2–900 and TAL–2–1000.  
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Figure S2. HRTEM micrographs of amorphous MOF TAL–2 and TAL–2–900. 

 

 
Figure S3. (A) XPS survey spectra. (B) XPS core-level spectra in the N1s region. (C) Distribution 

of various nitrogen species in the N1S region. 

 

Table S1. Elemental composition of the TAL–2 derived materials’ surface by XPS (at%). Total 

cobalt content by MP–AES (wt%). 

 

material 
XPS MP-AES 

C 
at% 

N 
at% 

O 
at% 

Co 
at% 

Co 
wt% 

TAL-2 75.8 11.5 11.3 1.40 18.003 ± 0.131 

TAL-2-800 93.1 4.6 2.1 0.19 5.453 ± 0.029 

TAL-2-900 93.5 1.5 4.9 0.13 23.606 ± 0.142 

TAL-2-1000 93.0 0.8 6.1 0.14 20.981 ± 0.262 
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Table S2. Distribution of various nitrogen species at the surface of the catalysts. 
 

material 
graphitic N 

%  
N-oxide 

% 
pyridinic N 

%  
amines/Co–Nx 

% 
pyrrolic N 

%  

TAL-2 2.1 0.5 28.8 43.4 25.3 

TAL-2-800 10.1 6.5 27.3 18.6 37.6 

TAL-2-900 0.0 0.0 32.6 11.9 55.5 

TAL-2-1000 0.0 0.0 28.9 10.1 61.0 

 

Table S3. Distribution of various carbon species at the surface of the catalysts. 

 

material 
C–O–C, C–OH 

% 
C=O 

% 
O–C=O 

% 
carbide 

% 
π–π* 

% 
sp2 
% 

sp3 
% 

TAL-2 19.8 10.5 1.1 3.3 1.4 25.8 38.1 

TAL-2-800 6.6 4.3 1.9 4.6 5.9 60.3 16.4 

TAL-2-900 6.8 4.0 2.0 5.0 6.0 61.5 14.6 

TAL-2-1000 5.9 3.2 0.2 5.5 8.1 65.1 12.0 

 

 

Table S4. Distribution of various oxygen species at the surface of the catalysts. 

 

material 
Co oxide 

% 
carbonyl, (ArOH) 

% 
ether 

% 
noncarbonyl, phenols 

% 
quinones 

% 
water 

% 

TAL-2 6.4 30.8 9.8 13.0 40.0 0.0 

TAL-2-800 19.6 26.3 19.3 18.6 13.9 2.2 

TAL-2-900 5.3 30.8 27.7 8.3 26.8 1.0 

TAL-2-1000 9.1 48.3 4.0 10.2 27.6 0.8 

 
 
Table S5. Distribution of various cobalt species at the surface of the catalysts. 

 

material 
Co(0) 

% 
P1-Co(OH)2 

% 
P2-Co(OH)3 

% 
P3-Co(OH)2_sattelite 

% 

TAL-2 0.1 33.5 23.4 43.1 

TAL-2-800 2.5 35.8 25.1 36.6 

TAL-2-900 4.3 28.5 20.0 47.3 

TAL-2-1000 4.4 15.3 10.7 69.7 
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4 Oxidative transformations 

 

Table S6. Recyclability of TAL–X derived catalysts in oxidation of toluene into benzoic acid.a 

      

 
a Reaction conditions: toluene (100 mg), TAL–2–900 (5.4 mg), 6 eq TBHP (892 µL), 80 oC, 16 h 
b NMR yield with 1,3,5-trimethoxybenzene as internal control 
 

 
Table S7. Recyclability of TAL–X derived catalysts in oxidation of diphenylmethane into 

benzophenone.a 

      

 
a Reaction conditions: diphenylmethane (150 mg), TAL–2–900 (4.5 mg), 6 eq TBHP (732 µL), 80 oC, 16 h 
b NMR yield with 1,3,5-trimethoxybenzene as internal control  
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Table S8. Effect of additive in the oxidation of toluene to benzoic acid.a 

 
 

entry additive equiv yieldb 

1 – – 42% 

2c – – 0 

3 TsOH 0.2 20% 

4 AcOH 0.1 46% 

5 AcOH 0.5 45% 

6 AcOH 1.0 56% 

7 AcOH 2.0 62% 

8 AcOH 3.0 60% 

9c AcOH 1.0 0% 

10 AcOH+ B(OMe)3 1.0 41% 

11 B(OMe)3 1.0 43% 

12d AcOH 1.0 33% 

13 TFA 0.1 25% 

14 TFA 0.5 26% 

15 TFA 1.0 17% 

16 TFA 2.0 11% 

17 TFA 3.0 4% 

18 TCA 1.0 28% 

19 benzoic acid 1.0 46% 

20 Et3N 0.1 34% 

21 Et3N 0.2 34% 

22 Et3N 0.5 34% 

23 Et3N 1.0 29% 

24 pyridine 1.0 21% 

 
a Reaction conditions: toluene (100 mg), TAL–2–900 (5.4 mg), 6 eq TBHP (892 µL), 80 oC, 16 h 
b NMR yield with 1,3,5-trimethoxybenzene as internal control 
c 6 equiv of H2O2 as oxidant 
d MeCN (2 mL) as solvent 

 

 

From toluene. A mixture of toluene (100 mg, 1.08 mmol, 1.0 equiv), 70% TBHP (892 µL, 6.48 

mmol, 6.0 equiv) and TAL–2–900 (5.4 mg) was left to stir at 80 oC. After 24 h, it was filtered through 

a Celite pad using MeOH, concentrated under reduced pressure, the residue was redissolved in 

K2CO3 solution (10 mL), washed with DCM (2×10 mL), the combined aqueous phase was acidified 

with HCl, extracted with DCM (3×10 mL), dried over MgSO4 and concentrated under reduced 

pressure to give the desired product as a colorless solid (59.7, 0.489 mmol, 45%). 

From benzylalcohol. A mixture of benzyl alcohol (100 mg, 0.925 mmol, 1.0 equiv), 70% TBHP 

(760 µL, 5.54 mmol, 6.0 equiv) and TAL–2–900 (4.6 mg) was left to stir at 80 oC. After 24 h, it was 

filtered through a Celite pad using MeOH, concentrated under reduced pressure, the residue was 

redissolved in K2CO3 solution (10 mL), washed with DCM (2×10 mL), the combined aqueous phase 

5 mg/mmol cat.

70% aq TBHP, 80 oC, 24 h

PhCOOHPhCH3     or     PhCH2OH    or    PhCH2COOH
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was acidified with HCl, extracted with DCM (3×10 mL), dried over MgSO4 and concentrated under 

reduced pressure to give the desired product as a colorless solid (105.2, 0.861 mmol, 93%). 

From phenylacetic acid. A mixture of 2-phenylacetic acid (100 mg, 0.734 mmol, 1.0 equiv), 70% 

TBHP (602 µL, 4.40 mmol, 6.0 equiv) and TAL–2–900 (3.7 mg) was left to stir at 80 oC. After 24 

h, it was filtered through a Celite pad using MeOH, concentrated under reduced pressure, purified 

by flash chromatography (EtOAc/PE 1:20) to give the desired product as a colorless solid (72.2 mg, 

0.591 mmol, 81%). 

Benzoic acid [4]: 

1H NMR (400 MHz, CDCl3) δ 8.13 (d, 2H, J = 7.1), 7.63 (t, 1H, J = 7.4), 7.49 (t, 2H, J = 7.7).  

13C NMR (100 MHz, CDCl3) δ 172.5, 134.0, 130.4, 129.4, 128.6. 

 

 

A mixture of ethylbenzene (100 mg, 0.942 mmol, 1.0 equiv), 70% TBHP (774 µL, 5.66 mmol, 6.0 

equiv) and TAL–2–900 (4.7 mg) was left to stir at 80 oC. After 24 h, it was filtered through a Celite 

pad using MeOH, concentrated under reduced pressure and purified by flash chromatography 

(EtOAc/PE 1:100) to give the desired compound as a colorless oil (95.0 mg, 0.791 mmol, 84%). 

Acetophenone [5]: 

1H NMR (400 MHz, CDCl3) δ 7.96–7.93 (m, 2H), 7.57–7.53 (m, 1H), 7.47–7.43 (m, 2H), 2.59 (s, 

3H). 

13C NMR (100 MHz, CDCl3) δ 198.2, 137.2, 133.2, 128.6, 128.4, 26.7. 

 

 

A mixture of diphenylmethane (150 mg, 0.892 mmol, 1.0 equiv), 70% TBHP (732 µL, 5.34 mmol, 

6.0 equiv) and TAL–2–900 (4.5 mg) was left to stir at 80 oC. After 24 h, it was filtered through a 

Celite pad using DCM, and concentrated under reduced pressure to give the desire compound as a 

colorless solid (157.4 mg, 0.864 mmol, 97%). 

1H NMR (400 MHz, CDCl3) δ 7.82–7.79 (m, 4H), 7.61–7.57 (m, 2H), 7.48 (t, 4H, J = 7.6). 

13C NMR (100 MHz, CDCl3) δ 196.9, 137.7, 132.5, 130.2, 128.4. 

 

5 mg/mmol cat.

70% aq TBHP, 80 oC, 24 h

PhCOCH3PhCH2CH3
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A mixture of p-xylene (100 mg, 0.942 mmol, 1.0 equiv), 70% TBHP (1.55 mL, 11.30 mmol, 12.0 

equiv) and TAL–2–900 (4.7 mg) was left to stir at 80 oC. After 24 h, it was concentrated under 

reduced pressure and the residue was purified by flash chromatography (EtOAc/PE 1:20 → 1:10) to 

give the desired products 4-methylbenzoic acid (53.8 mg, 0.395 mmol, 42%) and terephthalic acid 

(4.6 mg, 0.028 mmol, 3%), both as colorless solids.  

The reaction was repeated in the presence of acetic acid (107.7 µL, 1.884 mmol, 2 equiv) as an 

additive to give 4-methylbenzoic acid (60.7 mg, 0.446 mmol, 47%) and terephthalic acid (125 mg, 

0.075 mmol, 8%). 

4-Methylbenzoic acid [6]: 

1H NMR (400 MHz, CDCl3) δ 8.01 (d, 2H, J = 8.1), 7.28 (d, 2H, J = 8.1), 2.43 (s, 3H). 

13C NMR (100 MHz, CDCl3) δ 171.9, 144.8, 130.4, 129.4, 126.7, 21.9. 

Terephthalic acid [7]: 

1H NMR (400 MHz, DMSO–d6) δ 13.29 (s, 2H), 8.04 (s, 4H). 

13C NMR (100 MHz, DMSO–d6) δ 166.7, 134.5, 129.5. 

 

 

A mixture of m-xylene (100 mg, 0.942 mmol, 1.0 equiv), 70% TBHP (1.55 mL, 11.30 mmol, 12.0 

equiv) and TAL–2–900 (4.7 mg) was left to stir at 80 oC. After 24 h, it was concentrated under 

reduced pressure and the residue was purified by flash chromatography (EtOAc/PE 1:20 → 1:10) to 

give the desired products 3-methylbenzoic acid (40.9 mg, 0.300 mmol, 32%) and isophthalic acid 

(28.9 mg, 0.174 mmol, 18%) as colorless solid. 

The reaction was repeated in the presence of acetic acid (107.7 µL, 1.884 mmol, 2 equiv) as an 

additive, to give 3-methylbenzoic acid (58.1 mg, 0.427 mmol, 45%) and isophthalic acid (37.3 mg, 

0.224 mmol, 24%). 

3-Methylbenzoic acid [7]: 

COOH5 mg/mmol cat.

70% aq TBHP, 80 oC, 24 h
+

HOOC

COOH

42%
47% (with 2 eq AcOH)

3%
8% (with 2 eq AcOH)

5 mg/mmol cat.

70% aq TBHP, 80 oC, 24 h
+

HOOC

32%
45% (with 2 eq AcOH)

18%
24% (with 2 eq AcOH)

COOH COOH
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1H NMR (400 MHz, DMSO-d6) δ 12.86 (s, 1H), 7.76–7.73 (m, 2H), 7.43–7.35 (m, 2H), 2.35 (s, 

3H). 

13C NMR (100 MHz, DMSO-d6) δ 167.4, 137.9, 133.5, 130.7, 129.8, 128.5, 126.5, 20.8. 

Isophthalic acid [8]: 

1H NMR (400 MHz, DMSO–d6) δ 13.2 (s, 2H), 8.48 (s, 1H), 8.17 (d, 1H, J = 1.6), 8.15 (d, 1H, J = 

1.6), 7.64 (t, 1H, J = 7.7). 

13C NMR (100 MHz, DMSO–d6) δ 166.6, 133.4, 131.2, 130.0, 129.2. 

 

 

A mixture of mesitylene (100 mg, 0.832 mmol, 1.0 equiv), 70% aq TBHP (2.05 mL, 14.98 mmol, 

18.0 equiv) and TAL–2–900 (4.2 mg) was left to stir at 80 oC. After 24 h, it was concentrated under 

reduced pressure and the residue was purified by flash chromatography (EtOAc/PE 1:20 → 1:10) to 

give the desired products 3,5-dimethylbenzoic acid (20.5 mg, 0.137 mmol, 16%) and 5-

methylisophthalic acid (55.6 mg, 0.309 mmol, 37%) as colorless solids.  

The reaction was repeated in the presence of acetic acid (142.7 µL, 2.496 mmol, 3 equiv) as an 

additive to give 3,5-dimethylbenzoic acid (24.6 mg, 0.164 mmol, 20%) and 5-methylisophthalic acid 

(70.7 mg, 0.392 mmol, 47%). 

3,5-Dimethylbenzoic acid [7]: 

1H NMR (400 MHz, CDCl3) δ 7.74 (s, 2 H), 7.24 (s, 1H). 

13C NMR (100 MHz, CDCl3) δ 172.5, 138.3, 135.6, 129.3, 128.0, 21.3. 

HRMS for C9H9O2 [M–H]– found 149.0609; calcd. 149.0608. 

5-Methylisophthalic acid [9]: 

1H NMR (400 MHz, DMSO–d6) δ 13.18 (s, 2H), 8.28 (s, 1H), 7.98 (s, 2H), 2.43 (s, 3H). 

13C NMR (100 MHz, DMSO–d6) δ 166.7, 138.8, 133.9, 131.2, 127.3, 20.6. 

HRMS for C9H9O4 [M+H]+ found 181.0496; calcd. 181.0495. 

  

5 mg/mmol cat.

70% aq TBHP, 80 oC, 24 h
+

HOOC

16%
20% (with 3 eq AcOH)

37%
47% (with 3 eq AcOH)

COOH COOH
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5 Homocoupling reactions 

 

 

A solution of MeMgBr (3 M in Et2O, 876 µL, 1.75 mmol, 2.0 equiv) was added dropwise into a 

solution of benzyl bromide (150 mg, 0.877 mmol, 1.0 equiv) and TAL–2–900 (4.4 mg) in THF (5 

mL) at 0 oC, and the reaction was left to stir at RT. After 16 h, it was quenched with 1 M HCl, 

extracted with DCM and evaporated under reduced pressure to give the product as a colorless solid 

(76.3 mg, 0.419 mmol, 95%). 

1,2-Diphenylethane [10]: 

1H NMR (400 MHz, CDCl3) δ 7.34–7.30 (m, 4H), 7.25–7.21 (m, 6H), 2.96 (s, 4H). 

13C NMR (100 MHz, CDCl3) δ 141.9, 128.6, 128.5, 126.0, 38.1. 

 

A solution of MeMgBr (3 M in Et2O, 600 µL, 1.20 mmol, 2.0 equiv) was added dropwise into a 

solution of 4-bromobenzyl bromide (150 mg, 0.600 mmol, 1.0 equiv) and TAL–2–900 (3.0 mg) in 

THF (5 mL) at 0 oC, and the mixture was left to stir at RT. After 16 h, it was quenched with 1 M 

HCl, extracted with DCM and evaporated under reduced pressure to give the product as a colorless 

solid (92.1 mg, 0.271 mmol, 90%). 

1,2-Bis(4-bromophenyl)ethane [10]: 

1H NMR (400 MHz, CDCl3) δ 7.38 (d, 4 H, J = 8.3), 7.00 (d, 4H, J = 8.3), 2.85 (s, 4H). 

13C NMR (100 MHz, CDCl3) δ 140.2, 131.6, 130.4, 120.0, 37.2. 

 

A solution of MeMgBr (3 M in Et2O, 337 µL, 1.01 mmol, 2.0 equiv) was added dropwise into a 

solution of 4-iodobenzyl bromide (150 mg, 0.505 mmol, 1.0 equiv) and TAL–2–900 (2.5 mg) in 

THF (5 mL) at 0 oC, and the mixture was left to stir at RT. After 16 h, it was quenched with 1 M 

HCl, extracted with DCM and evaporated under reduced pressure to give the product as a colorless 

solid (101.3 mg, 0.233 mmol, 92%). 

1,2-Bis(4-iodophenyl)ethane: 

1H NMR (400 MHz, CDCl3) δ 7.59 (d, 4H, J = 8.3), 6.88 (d, 4H, J = 8.3), 2.83 (s, 4H). 

13C NMR (100 MHz, CDCl3) δ 140.8, 137.4, 130.6, 91.2, 37.1. 

HRMS for C14H13I2 [M+H]+ found 434.9058; calcd. 434.9107. 

 

R
Br 5 mg/mmol cat.

2 eq MeMgBr, THF
RT, 16 h

R

R
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A solution of MeMgBr (3 M in Et2O, 540 µL, 1.62 mmol, 2.0 equiv) was added dropwise into a 

solution of 4-iodobenzyl bromide (150 mg, 0.811 mmol, 1.0 equiv) and TAL–2–900 (4.1 mg) in 

THF (5 mL) at 0 oC, and the mixture was left to stir at RT. After 16 h, it was quenched with 1 M 

HCl, extracted with DCM and evaporated under reduced pressure to give the product as a colorless 

solid (79.1 mg, 0.376 mmol, 93%). 

1,2-Di-p-tolylethane [10]: 

1H NMR (400 MHz, CDCl3) δ 7.17 (s, 8H), 2.95 (s, 4H), 2.41 (s, 6H). 

13C NMR (100 MHz, CDCl3) δ 139.0, 135.4, 129.1, 128.4, 27.8, 21.1. 

 

A solution of MeMgBr (3 M in Et2O, 529 µL, 1.59 mmol, 2.0 equiv) was added dropwise into a 

solution of 2-fluorobenzyl bromide (150 mg, 0.794 mmol, 1.0 equiv) and TAL-2-900 (4.0 mg) in 

THF (5 mL) at 0 oC, and the mixture was left to stir at RT. After 16 h, it  was quenched with 1 M 

HCl, extracted with DCM and evaporated under reduced pressure to give the product as a colorless 

solid (65.2 mg, 0.299 mmol, 75%). 

1,2-Bis(2-fluorophenyl)ethane: 

1H NMR (400 MHz, CDCl3) δ 7.21–7.11 (m, 4H), 7.05–6.99 (m, 4H), 2.95 (s, 4H). 

13C NMR (100 MHz, CDCl3) δ 161.3 (d, JCF = 243), 130.9 (d, JCF = 5), 128.4 (d, JCF = 15), 127.9 

(d, JCF = 8), 124.0 (d, JCF = 3), 115.3 (d, JCF = 22), 29.9. 

19F NMR (376 MHz, CDCl3) δ -119.0 – -119.1 (m). 

 

A solution of MeMgBr (3 M in Et2O, 326 µL, 0.977 mmol, 2.0 equiv) was added dropwise into a 

solution of 2-fluorobenzyl bromide (150 mg, 0.489 mmol, 1.0 equiv) and TAL–2–900 (2.4 mg) in 

THF (5 mL) at 0 oC, and the mixture was left to stir at RT. After 16 h, it was quenched with 1 M 

HCl, extracted with DCM and evaporated under reduced pressure to give the product as a colorless 

solid (101.2 mg, 0.223 mmol, 91%). 

1,2-Bis(3,5-bis(trifluoromethyl)phenyl)ethane: 

1H NMR (400 MHz, CDCl3) δ 7.76 (s, 2H), 7.58 (s, 4H), 3.11 (s, 4H). 

13C NMR (100 MHz, CDCl3) δ 142.7, 132.1 (q, JCF = 33), 128.8 (d, JCF = 2), 123.4 (q, JCF = 271, 

CF3), 120.8 (p, JCF = 4), 37.1. 

19F NMR (376 MHz, CDCl3) δ –63.0. 

 

A solution of MeMgBr (3 M in Et2O, 383 µL, 1.15 mmol, 2.0 equiv) was added dropwise into a 

solution of 2-fluorobenzyl bromide (150 mg, 0.575 mmol, 1.0 equiv) and TAL–2–900 (2.9 mg) in 
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THF (5 mL) at 0 oC, and the mixture was left to stir at RT. After 16 h, it was quenched with 1 M 

HCl, extracted with DCM, evaporated under reduced pressure to give the product as a colorless solid 

(100.7 mg, 0.278 mmol, 97%). 

1,2-Bis(perfluorophenyl)ethane [10]: 

1H NMR (400 MHz, CDCl3) δ 3.02 (s, 4H). 

13C NMR (100 MHz, CDCl3) δ 146.6–146.4 (m), 141.6–141.4 (m), 136.5–136.2 (m), 113.1–112.7 

(m), 22.0. 

19F NMR (376 MHz, CDCl3) δ –144.3 to –144.4 (m), –155.9 (t, J = 20.6), –162.0 to –162.2 (m). 
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6 Electrochemical measurements 

 

The electrochemical activity of TAL–2 derived catalyst materials was assessed using Autolab 

electrochemical workstation equipped with rotating disk electrode (RDE). A three-neck 

electrochemical glass cell was used in all RDE experiments. Glassy carbon (GC) electrode with 

diameter of 5 mm mounted into a Teflon holder served as working electrode. GC rod and reversible 

hydrogen electrode (RHE) were counter and reference electrodes, respectively. 

 

Catalyst powder was ultrasonically dispersed in 0.05 wt% Nafion solution in 2-propanol and 

deposited onto the GC surface to yield a catalyst loading of 0.50 mg cm–2. For comparison, 

commercial Pt/C (E-TEK, loading 0.10 mg cm–2) was used as a reference for the ORR and HER, 

while RuO2 was used as a reference for the OER (Alfa Aesar, loading 0.12 mg cm–2). For 

experiments in alkaline and acid media 0.1 M KOH and 0.5 M H2SO4 electrolyte solutions were 

used, respectively. 

 

ORR. First, cyclic voltammetry (CV) experiments were performed to obtain stable catalyst surface. 

Catalysts were cycled for at least 5 times in argon-saturated electrolyte solution between –0.1 and 

1.1 V vs. RHE at 50 mV s–1. (Pt/C benchmark was cycled between 0.1 and 1.4 V vs RHE and CO-

stripping voltammetry was performed in order to obtain clean Pt surface). Then a background CV 

was recorded at 10 mV s–1. 

 

ORR experiments were performed in O2-saturated electrolyte and RDE polarization curves were 

recorded at a scan rate of 10 mV s–1 at different electrode rotation speeds (360, 610, 960, 1600, 1900, 

3100 rpm). The background current was then subtracted from the RDE data in order to eliminate 

capacitive current contribution. 

 

The data obtained from RDE polarization curves was analyzed by the Koutecky–Levich (K–L) 

equation (1) [11]: 

 
1

𝑗
=
1

𝑗k
+
1

𝑗d
= −

1

𝑛𝐹𝑘𝐶𝑂2

𝑏 −
1

0.62𝑛𝐹𝐷𝑂2

2/3
ν-1/6𝐶𝑂2

𝑏 ω1/2
 (1) 

 

where j, jk and jd – are measured, kinetic and diffusion-limited current densities, respectively, n is 

the amount of electrons transferred per oxygen molecule, k is the electrochemical rate constant for 
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O2 reduction (cm s−1), F is the Faraday constant (96,485 C mol−1), ω is the electrode rotation rate 

(rad s−1), CO2
b is the concentration of oxygen in the bulk (1.2×10−6 mol cm−3) [12], DO2 is the diffusion 

coefficient of O2 (1.9×10−5 cm2 s−1) [13] and ν is the kinematic viscosity of the solution (0.01 cm2 

s−1) [13]. 

 

RRDE analysis was performed to determine the ORR pathway. The hydrogen peroxide yield and 

electron transfer number (n) was calculated based on the following equations (2) and (3): 

 %[HOO–] =

2𝐼r
𝑁

𝐼d+
𝐼r
𝑁

× 100% (2) 

   

 𝑛 =
4𝐼d

𝐼d+
𝐼r
𝑁

 (3) 

where Id is the disk current, Ir is the ring current and N is collection efficiency of the gold ring 

electrode (N = 0.22). 

 

To explore the ORR stability of TAL-2-derived catalyst materials, the electrode potential was cycled 

5000 times between 0.6 and 1.0 V vs. RHE in O2-saturated electrolyte at 100 mV s–1 (rotated at 1600 

rpm) and RDE curves before and after stability test were compared. 

 

OER. To obtain OER data LSV curves were recorded at 1600 rpm in 0.1 M KOH electrolyte using 

a scan rate of 10 mV s–1 in potential window of 1–1.8 V vs. RHE. Before measurement electrode 

was cycled 40 times at the scan rate of 200 mV/s to activate the material. Catalyst durability was 

evaluated by recording the chronoamperometry (i–t) curve at the potential of 1.6 V at 1600 rpm. 

Electrochemical impedance spectroscopy was performed in order to obtain iR-compensated 

potentials. 

 

HER. HER measurements were performed in argon-saturated 1 M KOH solution. HER was 

measured also in 0.5 M H2SO4 solution. Before measurement electrodes were cycled 5 times at scan 

rate of 50 mV s–1 and stable LSV was recorded at 10 mV s–1 within the potential range of –0.8 to 1 

V vs RHE.  

https://www.sciencedirect.com/topics/chemistry/diffusion-coefficient
https://www.sciencedirect.com/topics/chemistry/diffusion-coefficient
https://www.sciencedirect.com/topics/chemistry/kinematic-viscosity
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Figure S4. RDE polarization data on oxygen reduction recorded at various rotation rates on (A) 

TAL–2–800, (C) TAL–2–900 and (E) TAL-2-1000 modified GC electrode; ν = 10 mV s −1. 

Koutecky−Levich plots for O2 reduction on (B) TAL–2–800, (D) TAL–2–900 and (F) TAL–2–1000 

modified GC electrode. Insets: potential dependence of the number of electrons transferred per O2 

molecule.  
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Figure S5. Electrochemical characterization of TAL–2 derived materials in 0.1 M KOH. (A) Cyclic 

voltammograms of electrocatalyst-modified GC electrodes (under argon); ν = 50 mV s−1. (B) RRDE 

polarization curves. (C) H2O2 production percentages. 

 

 

 

 
Figure S6. The Nyquist plots. 
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Figure S7. Electrochemical oxygen reduction on TAL materials in 0.5 M H2SO4. (A) RDE 

polarization curves for TAL–2 derived and Pt/C-modified GC electrodes at 1600 rpm; ν = 10 mV s 

−1. (B) RDE polarization data on oxygen reduction recorded at various rotation rates on TAL–2–900 

modified GC electrode; ν = 10 mV s −1. (C) Koutecky−Levich plots for O2 reduction on TAL–2–900 

modified GC electrode. Inset: number of electrons transferred per O2 molecule. (D) Electrochemical 

stability test for TAL–2–900 (mid-range: 0.6−1.0 V).   
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Table S9. Comparison of various parameters for trifunctional ORR/OER/HER catalysts. 
 
 

entry catalyst precursors 
catalyst 
loading 
mg cm −2 

ORR 
E1/2 @−3 mA cm–2 

@1600 rpm 

OER 
E10 @10mA cm–2 

@1600 rpm 
ΔE 

HER 
–E–10 @10 mA cm–2 

@1600 rpm 
reference 

cobalt-based materials 

1 Co/MMCs PPy + carbon fibers + CoCl2 0.22 
0.84 

(1 M KOH) 
1.41 

(1 M KOH) 
0.57 

0.086 
(1 M KOH) 

[14] 

2 Co/CNFs (1000) Co foil + melamine 0.3 
0.896 

(0.1 M KOH) 
1.55 

(1 M KOH) 
0.65 

0.19 
(1 M KOH) 

[15] 

3 Co2B/Co/N-B-C/B4C B4C + Co(OAc)2 + melamine  0.127 
0.83 

(0.1 M KOH) 
1.53 

(0.1 M KOH) 
0.70 

0.22 
(0.1 M KOH) 

[16] 

4 CoT@NC NH4@Zn3OH(PzC)3 0.2 
0.86 

(0.1 M KOH) 
1.58 

(1 M KOH) 
0.72 

0.209 
(1 M KOH) 

[17] 

5 Co4N@NC-2 ZIF-67 0.3 
0.84 

(0.1 M KOH) 
1.52 

(0.1 M KOH) 
0.68 

0.283 
(1 M KOH) 

[18] 

6 Co@N-C-800 THB + Co(OAc)2 0.36 
0.85 

(0.1 M KOH) 

1.58 

(1 M KOH) 
0.73 

0.292 

(0.5 M H2SO4) 

[19] 

7 TAL-2-900 CoCl2 + L1 0.50 
0.85 

(0.1 M KOH) 
1.60 

(0.1 M KOH) 
0.75 

0.264 
(1 M KOH) 

0.289 
(0.5 M H2SO4) 

This work 

8 Co@N-CNTF Co(OAc)2 + adenine 0.28 
0.81 

(0.1 M KOH) 

1.58 

(1 M KOH) 
0.77 

0.26 

(1 M KOH) 
[20] 

9 Co/NGC-3 g-C3N4 + glucose + ZIF-67 0.20 
0.85 

(0.1 M KOH) 
1.636 

(0.1 M KOH) 
0.786 

0.293 
(0.1 M KOH) 

[21] 

10 D–Co@CNG GO + Co(NO3)2 + Zn(NO3)2 + 2-MIM 0.20 
0.81 

(0.1 M KOH) 
1.60 

(1 M KOH) 
0.79 

0.205 
(1 M KOH) 

[22] 

11 
Co/CoO@Co–N-C-

800 
shrimp-shell + Co(NO3)2 + pyrrole 0.305 

0.854 
(0.1 M KOH) 

1.664 
(0.1 M KOH) 

0.81 
0.376 

(0.1 M KOH) 
(@20 mA cm-2) 

[23] 

12 Co2P Co(acac)2 + TOP 0.2 
0.839 

(0.1 M KOH) 
1.51 

(1 M KOH) 
0.671 

0.075 
(1 M KOH) 

[24] 

13 CoP NPs/CNSs Co(OAc)2 + melamine + phytic acid 0.25 
0.88 

(0.1 M KOH) 
1.58 

(1 M KOH) 
0.7 

0.115 
(1 M KOH) 

[25] 

14 Co2P/CoNPC ZIF‐67 + red phosphorus 0.39 
0.843 

(0.1 M KOH) 
1.556 

(1 M KOH) 
0.713 

0.28 
(1 M KOH) 

[26] 

15 Co2P/NPG–900 CoPc(NH2)4 + GO + Cl6N3P3  0.254 
0.81 

(0.1 M KOH) 
1.55 

(1 M KOH) 
0.74 

0.245 
(1 M KOH) 

[27] 

16 CoP@SNC Co(Ac)2·+ HEDP 0.6 
0.79 

(0.1 M KOH) 
1.58 

(1 M KOH) 
0.79 

0.174 
(1 M KOH) 

[28] 

17 Co2P/CoN in NCNTs melamine + P123 + TPP + Co(NO3)2 0.1 
0.85 

(0.1 M KOH) 
1.65 

(0.1 M KOH) 
0.80 

0.098 
(0.5 M H2SO4) 

[29] 

18 CoP-PBSCF NaH2PO2·H2O + H-PBSCF 0.255 
0.752 

(0.1 M KOH) 

1.57 

(0.1 M KOH) 
0.81 

0.24 

(0.1 M KOH) 
[30] 

19 Co-B-O/NPC–50% Co(Ac)2+ NaBH4 + lecithin + g-C3N4 0.42 
0.83 

(0.1 M KOH) 
1.58 

(1 M KOH) 
0.753 

0.316 
(1 M KOH) 

[31] 
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20 CoSA+Co9S8/HCNT ZnS + ZIF‐67 + polydopamine NA 
0.855 

(0.1 M KOH) 
1.56 

(0.1 M KOH) 
0.705 

0.25 
(1 M KOH) 

[32] 

21 NS/rGO-Co4 
Co(NO3)2 + thiourea + GO + sodium 
dodecyl benzene sulfonate (SDBS) 

0.404 
0.79 

(0.1 M KOH) 
1.495 

(0.1 M KOH) 
0.705 

0.15 
(0.5 M H2SO4) 

[33] 

22 Co0.85Se@NC ZIF-67 + Se 0.20 
0.817 

(0.1 M KOH) 
1.55 

(1 M KOH) 
0.733 

0.230 
(1 M KOH) 

[34] 

23 
DAP–DAB–

Co(OAc)2·4H2O 
DAP +DAB + Co(OAc)2 0.30 

0.90 
(0.1 M KOH) 

1.62 
(0.1 M KOH) 

0.72 
0.20 

(1 M KOH) 
[35] 

24 CF–NG–Co Co(Ac)2 + GO + melamine 0.28 
0.88 

(0.1 M KOH) 
1.63 

(1 M KOH) 
0.75 

0.212 
(1 M KOH) 

[36] 

iron-based materials 

25 BA-TAP-Fe-800 
2,4,6-triaminopyrimidine  
+ barbituric acid + FeCl3 

0.283 
0.85 

(0.1 M KOH) 
1.55 

(0.1 M KOH) 
0.7 

0.33 
(0.1 M KOH) 

[37] 

26 FePx/Fe-N-C/NPC tannic acid + FeCl2·4H2O + Na2HPO4 
0.21/0.42 

(HER) 
0.86 

(0.1 M KOH) 
1.565 

(1 M KOH) 
0.705 

0.075 
(0.5 M H2SO4) 

[38] 

27 PPy/FeTCPP/Co pyrrole + FeTCPP + Co(NO3)2 0.3 
0.86 

(0.1 M KOH) 
1.61 

(0.1 M KOH) 
0.75 

0.24 

(0.1 M KOH) 
[39] 

28 
FeS/Fe3C@N-S-C-

800 

benzenetricarboxylic acid + Pd(PPh3)4 + 
3,8-DBPT-dibromophenanthroline + 

Fe(OAc)2 + DMSO 
0.3/0.6 

0.87 
(0.1 M KOH) 

1.80 
(1 M KOH) 

0.93 
0.174 

(0.5 M H2SO4) 
[40] 

other metal based materials [Ni, W, Ru, Mo] 

29 Ni-NC700 
Ni(NO3)2+ 2,6-pyridine dicarboxylic acid + 

4,4′-bipy 
0.31 

0.75 
(0.1 M KOH) 

1.66 
(0.1 M KOH) 

0.91 
0.301 

(0.1 M KOH) 
[41] 

30 W2N/WC WO3 powder + dicyanodiamide 0.20 
0.83 

(0.1 M KOH) 
1.56 

(1 M KOH) 
0.73 

0.148 
(1 M KOH) 

[42] 

31 Ru-SA/Ti3C2Tx Ti3AlC2 + RuCl3 0.61 
0.80 

(0.1 M HClO4) 
1.53 

(0.1 M HClO4) 
0.73 

0.07 
(0.5 M H2SO4) 

[43] 

32 G@N-MoS2 sulfur + MoCl5 + MgO + NH3 0.25 
0.716 

(0.1 M KOH) 
1.63 

(0.1 M KOH) 
0.914 

0.243 
(0.5 M H2SO4) 

[44] 

multi-transition-metals based materials 

33 
CoOx-NeC/TiO2C 

(22.7%) 
Ti3C2Tx + Co(NO3)2 + Zn(NO3)2 + 2-MIM 0.141 

0.85 
(0.1 M KOH) 

1.58 
(1 M KOH) 

0.72 
0.367 

(1 M KOH) 
[45] 

34 N/CF-EC-900 Co(NO3)2 + Fe(NO3)3 + albumin  0.17 
0.849 

(0.1 M KOH) 

1.61 

(0.1 M KOH) 
0.761 

0.164 

(0.1 M KOH) 
[46] 

35 IrO2-ZnO ZnCl2 + IrCl3 + NH3 0.2547 
0.81 

(1 M KOH) 
1.59 

(1 M KOH) 
0.78 

0.25 
(1 M KOH) 

[47] 

36 ZnCo−PVP-900 Zn(NO3)2 + K3Co(CN)6 + PVP 0.28 
0.83 

(0.1 M KOH) 
1.63 

(1 M KOH) 
0.80 

0.25 
(1 M KOH) 

[48] 

37 Co2Mn1 DH Mn(NO3)2 + Co(NO3)2 0.25 
0.78 

(0.1 M KOH) 
1.58 

0.1 M KOH 
0.80 

0.187 
(1 M KOH) 

[49] 

38 Ni2P/CoN-PCP NiCl2 + CoN–PCP support + NaH2PO2 +  0.26 
0.871 

(0.1 M KOH) 
1.50 

(1 M KOH) 
0.629 

0.094 
(1 M KOH) 

[50] 

39 NiCoP/CNF-900 
polyacrylonitrile + Ni(NO3)2  

+ Co(NO3)2 + red P 
NA 

0.82 
(0.1 M KOH) 

1.508 
(1 M KOH) 

0.688 
0.130 

(1 M KOH) 
[51] 

40 FeNi@N-CNT/NCSs g-C3N4 + aniline + Fe(NO3)3 + Ni(NO3)2 0.255 
0.84 

(0.1 M KOH) 
1.59 

(0.1 M KOH) 
0.75 

0.203 
(1 M KOH) 

[52] 

41 Pt/NiO/Ni/CNT-3 CNTs + Zn plate + NiCl2 + K2PtCl6 0.255 
0.94 

(0.1 M KOH) 
1.7 

(0.1 M KOH) 
0.76 

0.117 
(0.1 M KOH) 

[53] 
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42 CoP/Ni2P@NC CoCl2·6H2O + NiCl2·6H2O + EDTMPS NA 
0.79 

(0.1 M KOH) 
1.57 

(1 M KOH) 
0.78 

0.330 
(1 M KOH) 

[54] 

43 NiCoOS ZIF-67 + Ni(NO3)2·6H2O + thioacetamide 0.318 
0.79 

(0.1 M KOH) 

1.7 

(0.1 M KOH) 
0.91 

0.3 
(0.1 M KOH) 

[55] 

44 FeCo/Co2P@NPCF 
bacterial cellulose + K3[Fe(CN)6] + CoCl2  

+ melamine + phytic acid 
0.28 

0.79 
(0.1 M KOH) 

1.56 
(0.1 M KOH) 

0.77 
0.26 

(1 M KOH) 
[56] 

45 Rh6Cu1/C RhCl3 + CuCl2+ PVP + ascorbic acid 0.282 
0.85 

(0.1 M KOH) 
1.54 

(1 M KOH) 
0.69 

0.017 
(0.5 M H2SO4) 

[57] 

46 Co9S8@MoS2 Co(OAc)2 + Na₂MoO₄ + PVP 0.407 
0.88 

(0.1 M KOH) 
1.57 

(1 M KOH) 
0.69 

0.143 
(1 M KOH) 

[58] 

47 O-Co0.5Mo0.5Se2 
nickel foam + Co(NO3)2 + Na₂MoO₄ + 

hexamethylenetetramine + Se 
NA 

0.83 
(0.1 M KOH) 

1.406 
(1 M KOH) 

0.576 
0.102 

(1 M KOH) 
[59] 

48 
Co9S8-MoS2/N-
CNAs@CNFs 

Zn(NO3)2 + Co(NO3)2 + 2-MIM + Na₂MoO₄ 0.17 
0.82 

(0.1 M KOH) 
1.57 

(1 M KOH) 
0.75 

0.163 
(1 M KOH) 

[60] 

49 Co5.47N@Co3Fe7/N-C 
Urea + GO + oxidized CNTs  

+ FeCl3 + CoCl2 
0.60 

0.94 
(0.1 M KOH) 

1.72 
(0.1 M KOH) 

0.78 

0.181, 
(1 M KOH) 

0.115, 
(0.5 M H2SO4) 

[61] 

50 
Cu-foam@CuCoNC–

500 
Cu(OH)2 + Cu foam + Co(NO3) 

 + dimethylimidazole 
NA 

0.84 
(0.1 M KOH) 

1.485 
(1 M KOH) 

0.645 
0.059 

(1 M KOH) 
[62] 

51 Fe3C-Co/NC P123 + Co(NO3)2 + Fe(NO3)3 + melamine 
0.2 ORR 
0.4 OER 
0.3 HER 

0.885 
(0.1 M KOH) 

1.58 
(1 M KOH) 

0.695 
0.238 

(1 M KOH) 
[63] 

non-metal based materials 

52 SHG melamine + NiSO4 + KCl 0.71 
0.87 

(0.1 M KOH) 
1.60 

(0.1 M KOH) 
0.73 

0.31 
(0.1 M KOH) 

[64] 

53 NOGB-800 
sodium citrate + Co(NO3)2 
+ K3[Fe(CN)6] + dopamine 

0.4 
0.84  

(0.1 M KOH) 
1.65 

(1 M KOH) 
0.81 

0.22 
(1 M KOH) 

[65] 

54 N-doped graphene graphene + melamine 0.283 
0.76 

(0.1 M KOH) 
1.57 

(1 M KOH) 
0.81 

0.15 
(0.5 M H2SO4) 

[66] 

55 NCN-1000-5 citric acid + NH4Cl 0.2 
0.82 

(0.1 M KOH) 
1.64 

(0.1 M KOH) 
0.82 

0.09 
(0.5 M H2SO4) 

[67] 

PPy = polypyrrole nanowires , THB = 1, 3, 5-tris (4′-hydroxy-5′-formylphenyl) benzene, TOP = trioctylphosphine, HEDP = 1-hydroxyethylidene-1,1-diphosphonic acid, CoP-PBSCF = The CoP-
PrBa0.5Sr0.5Co1.5Fe0.5O5+δ , EDTMPS  = sodium salt of ethylenediamine tetra(methylenephosphonicacid), DAP = 2,6-diacetylpyridine, DAB = 3,3′-diaminobenzidine, TCPP = tetra(4-
carboxyphenyl)porphyrin, PVP = polyvinylpyrrolidone 
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Table S10. Comparison of the main ORR/OER/HER kinetic parameters obtained for TAL-2 

derived catalyst materials. 

 

Table S11. Specific surface area and porosity related parameters derived from N2 physisorption 

analysis. 

material 
SBET 

m2 g–1 
SDFT 

m2 g–1 
Vtot 

cm3 g–1 
Vµ 

cm3 g–1 

TAL-2 59 41 0.09 0.01 

TAL-2-800 589 655 0.55 0.2 

TAL-2-900 421 441 0.39 0.14 

TAL-2-1000 394 372 0.44 0.11 

 

Figure S8. (A) PXRD patterns of spent TAL–2–900 catalysts (SC) after ORR, OER and HER 

stability tests. (B) HRTEM micrograph of spent catalyst after ORR. 

 

Figure S9. Reproducibility of TAL-2 derived materials in ORR, OER and HER. All experiments 

were conducted six times individually using different batches of the catalyst materials.  

 ORR OER  HER 

ECSA 
catalyst 

Eonset 

@1600 rpm 

V vs. RHE 

E1/2 
@–3mA cm–2 1600 rpm 

V vs. RHE 

E10 

@10mA cm–2@1600rpm 

V 

η 
 

mV 

ΔE 
 

V 

η 
 

mV 

TAL-2-800 0.96 0.83 1.69 460 0.86 417 440 

TAL-2-900 1.00 0.85 1.60 370 0.75 264 366 

TAL-2-1000 0.97 0.83 1.65 420 0.82 411 178 

Pt/C 1.01 0.86 n.a. n.a. n.a. 57 n.a. 

RuO2 n.a. n.a. 1.69 n.a. n.a. n.a. n.a. 
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7 AEMFC and ZAB Applications 

 

Alkaline anion exchange membrane fuel cell (AEMFC). For the preparation of membrane 

electrode assembly (MEA) TAL–2–900 (2 mg cm–2) was applied on the cathode and Pt-Ru/C 

(loading 0.6 mg cm–2) was used as anode catalyst. Poly[2,2′-(2,2′′,4,4′′,6,6′′-hexamethyl-p-

terphenyl-3,3′′-diyl)-5,5′-bibenzimidazole] (HMT–PMBI) placed between two gas diffusion 

layers (GDL) modified with catalyst material. HMT–PMBI was also used as ionomer in the 

catalyst ink to enhance ink stability of gas diffusion layers. The ink suspension was prepared using 

1% solid catalyst (catalyst/HMT–PMBI 85:15) disseminated in 99% of mixture of methanol/water 

(CH3OH/H2O 3:1) for both cathode and anode. The ink was sonicated for an hour before modifying 

the GDLs. A cut piece (square shape; 4 cm2) of HMT–PMBI membrane was soaked in 1 M KOH 

along with modified GDLs for 24 h. The AEMFC hardware was assembled placing HMT–PMBI 

between catalyst modified GDLs with PTFE gasket using torque of 5 Nm. The area of the fuel cell 

electrode was 5 cm2. The single cell fuel cell test was performed with Greenlight Fuel Cell Test 

Station (G50 Fuel cell system, Hydrogenics, Vancouver, Canada) using humidified H2 and O2 

gases at 60 oC with back pressure of 190–200 kPa for cathode and anode. The flow rates of H2 and 

O2 were 0.30 and 0.35 L min–1, respectively. 

 

Zinc–air battery (ZAB). Preparation of PVA gel electrolyte: Polymer electrolyte was prepared 

according to the previously reported procedure [68]. Under optimized conditions, poly(vinyl) 

alcohol (5 g, Mw ~ 145k, Mowiol® 28–99) was added into a solution of Zn(OAc)2 in 0.1 M KOH 

(100 mL) and the mixture was left to stir at 90 oC. After 90 min, 24 mL of the mixture was poured 

into a Petri dish (⌀10 cm) and left to gelate by storing at –20 oC for 3 h to give the desired gel 

electrolyte. 

 

ZAB preparation and testing: Zinc foil (0.03 mm thickness) and carbon cloth (carbon loading of 

30 g/m2) were used without additional treatment. A suspension of TAL–2–900 (10 mg) and Nafion 

(10 µL of a 0.5% stock solution) in 2-propanol (1 mL) was sonicated for 1 h. It was then pipetted 

onto the carbon cloth (square; 2 cm × 2 cm). A sandwich-like ZAB (final catalyst loading: 2.5 

mg/cm2) was tested under indicated potential until the loss of activity. 
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NMR Spectra  
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Acetophenone 
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Benzophenone 
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4-Methylbenzoic acid 

 

 

  



 

 

 

S36 

 

Terephthalic acid 
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3-Methylbenzoic acid 
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Isophthalic acid 
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3,5-Dimethylbenzoic acid 
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5-Methylisophthalic acid 
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1,2-Diphenylethane 
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1,2-Bis(4-bromophenyl)ethane 
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1,2-Bis(4-iodophenyl)ethane 
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1,2-Di-p-tolylethane 
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1,2-Bis(2-fluorophenyl)ethane 
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1,2-Bis(2-fluorophenyl)ethane 
19F NMR 
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1,2-Bis(3,5-bis(trifluoromethyl)phenyl)ethane 
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1,2-Bis(3,5-bis(trifluoromethyl)phenyl)ethane 
19F NMR 
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1,2-Bis(perfluorophenyl)ethane 
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1,2-Bis(perfluorophenyl)ethane 
19F NMR 

 
 
 


