SUPPLEMENTARY INFORMATION

High-performing Wide Bandgap Perovskite Solar Cells Fabricated in Ambient High-Humidity Conditions

Ugur Deneb Menda, Guilherme Ribeiro, Daniela Nunes, Tomás Calmeiro, Hugo Águas, Elvira Fortunato, Rodrigo Martins, Manuel J. Mendes

i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829- 516 Caparica, Portugal

Figure S1. Photoluminescence (PL) spectra of the WBG perovskite $(Cs_{0.17}FA_{0.83}PbI_{3-x}Br_x)$ layers with unnormalized intensity.

Figure S2. Details of the XRD peaks in Fig. 2d of the main article, of the $Cs_{0.17}FA_{0.83}PbI_{3-x}Br_x$ layers with different x values, showing more clearly the shift of the characteristic peaks to larger scattering angles with the increment of the Br:I ratio. This occurs due to the contraction of the crystal lattice with higher bromide content.

Figure S3. AFM images of Cs_{0.17}FA_{0.83}PbI_{3-x}Br_x WBG perovskite layers with different Br content.

Figure S4. Open-circuit voltage, V_{oc} , deficit values of the WBG PSCs with the 3 different bandgaps, E_G .

Figure S5. Dark I-V curve of the best performing solar cell with excess reverse leakage current.

Figure S6. J-V curves in reverse scan (from Forward bias, FB, to Short Circuit, SC) and forward scan (from SC to FB). The plot shows a distinct hysteresis effect which is attributed to the mobile ions/ion-vacancies in the perovskite material [1,2]. This phenomenon is still being actively researched both on theoretical [3–5] and experimental [1,2] grounds, but the general consensus in the PSCs field is that the results comparison should focus in the reverse scan JVs of the best performing devices [5].

Figure S7. The effects of key deposition conditions, affecting the defect density of the fabricated $(CsI)_{0.17}(FAI)_{0.83}(PbI_2)_{0.6}(PbBr_2)_{0.4}$ perovskite layers, in the resulting JV characteristics of the PSCs. In view of the optimization studies performed in this work, it was ascertained that chlorobenzene washing should be performed in a slow process, close to the end of the spinning (right before the turbid point) and a slight improvement has been observed when the antisolvent was applied after heating to 50-70°C. Additionally, increased UV-O₃ treatment time assists the perovskite coverage on the TiO₂ layer in high humid ambient which causes an increase in the solar cell performance.

Fable S1. Specific fabrication	parameters applied for the o	ptimized WBG	(1.70 eV)) PSCs.
---------------------------------------	------------------------------	--------------	------------	---------

	Antisolvent (CB) drip	UV-O ₃ treatment on mesoporous TiO ₂	Substrate pretreatments
Time	1-2 s before TP	30 minutes	10 min
Temperature	50-70 °C	Room temperature	70 °C
Distance from substrate	5 mm	2 cm	-
Volume	80-120 µl	-	-

References:

- [1] B. Chen, M. Yang, S. Priya, K. Zhu, Origin of J-V Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 7 (2016) 905–917. https://doi.org/10.1021/acs.jpclett.6b00215.
- [2] C. Li, S. Tscheuschner, F. Paulus, P.E. Hopkinson, J. Kießling, A. Köhler, Y. Vaynzof, S. Huettner, Iodine Migration and its Effect on Hysteresis in Perovskite Solar Cells, Adv. Mater. 28 (2016) 2446–2454. https://doi.org/10.1002/adma.201503832.
- [3] J. Bisquert, A. Guerrero, C. Gonzales, Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit, ACS Phys. Chem. Au. (2021). https://doi.org/10.1021/acsphyschemau.1c00009.
- [4] S. Van Reenen, M. Kemerink, H.J. Snaith, Modeling Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 6 (2015) 3808–3814. https://doi.org/10.1021/acs.jpclett.5b01645.
- [5] S.N. Habisreutinger, N.K. Noel, H.J. Snaith, Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells, ACS Energy Lett. 3 (2018) 2472–2476. https://doi.org/10.1021/acsenergylett.8b01627.