Supporting Information for:

Remarkable Ion Transport and Electrochemical Characteristics of Magnesium Fluorinated Alkoxyaluminate-Diglyme Electrolytes for Rechargeable Magnesium Batteries

Toshihiko Mandai*, Yong Youn, Yoshitaka Tateyama

Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

CORRESPONDING AUTHOR FOOTNOTES

Telephone: +81-29-860-4464, E-mail: MANDAI.Toshihiko@nims.go.jp

Figure S1. ¹H NMR spectra of (a) $Mg[B(HFIP)_4]_2$ and (b) $Mg[Al(HFIP)_4]_2$. The spectrum data of

Mg[B(HFIP)₄]₂ was transcribed from Ref. 32 of the main text.

Figure S2. SEM image of Cu working electrode after galvanostatic polarization at 1 mA cm⁻² for 1 h

in 0.3 mol dm⁻³ Mg[Al(HFIP)₄]₂/G2 at 30 °C.

Figure S3. Liquid densities of 0.3 mol dm⁻³ (a) Mg[B(HFIP)₄]₂/Gn and (b) Mg[Al(HFIP)₄]₂/Gn (n = 1-4) measured in the temperature range of 20–80 °C. Based on the deviation from the slope made using the density-temperature profiles at the lower temperatures, the appropriate temperature range capable to characterize the transport properties was adopted.

Figure S4. Ionic conductivities of (a) Mg[B(HFIP)₄]₂/G2 and (b) Mg[Al(HFIP)₄]₂/G2 measured in the temperature range of 20–70 °C.

Figure S5. Ionic conductivities of (a) $Mg[B(HFIP)_4]_2/G3$ and (b) $Mg[Al(HFIP)_4]_2/G3$ measured in the

temperature range of 20–70 °C.

Figure S6. Voltage profiles of galvanostatic polarization in (a) 0.3 mol dm⁻³ Mg[B(HFIP)₄]₂/Gn and (b) 0.3 mol dm⁻³ Mg[Al(HFIP)₄]₂/Gn (n = 1-4) recorded on carbon fiber electrodes at 1 mA cm⁻² at 30 °C. Insets display the magnified profiles of the steady state.

Figure S7. Calculated RDF profiles of (left) B and (right) Al surroundings in 0.3 mol dm⁻³ Mg[Z(HFIP)₄]₂/G3.

Figure S8. (a) Mg 2p, (b) O 1s, and (c) F 1s XPS spectra recorded on the magnesium metal deposited

from 0.3 mol dm⁻³ Mg[Z(HFIP)₄]₂/G2 (Z = B or Al).

Figure S9. CVs of 0.1, 0.3, 0.5 mol dm⁻³ Mg[Z(HFIP)₄]₂/G2 (Z = B or Al) recorded on Pt electrode at a scan rate of 10 mV s⁻¹ at 30 °C.

Figure S10. SEM images and corresponding EDX mapping of the electrodeposited magnesium obtained from (a) 0.5 mol dm⁻³ Mg[B(HFIP)₄]₂/G2 and (b) 0.5 mol dm⁻³ Mg[Al(HFIP)₄]₂/G2. (c) The corresponding voltage profiles of galvanostatic polarization recorded on carbon fiber substrates at 1 mA cm⁻² at 30 °C were also included.

Figure S11. (a) Galvanostatic magnesium deposition/dissolution cycling profiles and (b) corresponding Coulombic efficiency in 0.3 and 0.6 mol dm⁻³ Mg[B(HFIP)₄]₂/G2. The 0.6 mol dm⁻³ solution required over 60 times of pre-cycling to complete the conditioning of the electrolyte and/or [electrolyte | anode] interface.