Supporting Information:

Molecular dynamics simulations probe greenhouse gas sorption capabilities of metal organic framework-based membrane for efficient gas separation processes

Jordan Chapman¹, Nagasree Garapati¹, Vassiliki-Alexandra Glezakou², Yuhua Duan³, Jianli Hu^a

and Cerasela Zoica Dinu^{1,*}

¹Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States

²Basic/Applied Molecular Found, Pacific Northwest National Laboratory, Richland, WA 99352, United States

³National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania 15236, United States

Table of Contents

- **Table S.1:** varied simulation pressures corresponded to respective number of molecules3in single-component gas baths as well as simulation box dimensions required to
achieve target pressure calculated for ideal gas conditions.3
- **Table S.2:** varied simulation pressures corresponded to respective number of molecules3in gas mixture baths as well as simulation box dimensions required to achieve targetpressure calculated for ideal gas conditions.
- Fig. S.1: schematic representation of gas permeation simulations at initial configurations 2

Fig. S.2: permeation and sorption profiles of CO ₂	4
Fig. S.3: permeation and sorption profiles of CH ₄ .	5
Fig. S.4: permeation and sorption profiles of SO ₂	6
Fig. S.5: permeation and sorption profiles of NO ₂ .	7
Fig. S.6: permeation and sorption profiles of NO.	8
Fig. S.7: permeation and sorption profiles of CO_2 and CH_4	9
Fig. S.8: permeation and sorption profiles of CO ₂ and SO ₂	10
Fig. S.9: permeation and sorption profiles of CO_2 and NO_2	11
Fig. S.10: permeation and sorption profiles of CO_2 and NO.	12

Figure S.1: schematic representation of gas permeation simulations at initial configurations in which a $4 \times 4 \times 3$ MIL-160 membrane separates a gas bath from a vacuum chamber.

Tables:

Table S.1: varied simulation pressures corresponded to respective number of molecules in singlecomponent gas baths as well as simulation box dimensions required to achieve target pressure calculated for ideal gas conditions.

Simulation pressure (bar)	Number of molecules	X-direction length (nm)	Y-direction length (nm)	Z-direction length (nm)	Simulation box volume (nm ³)
0.2	20	8.4	8.4	68.1	4,805
0.5	50	8.4	8.4	68.1	4,805
1	100	8.4	8.4	68.1	4,805
5	500	8.4	8.4	68.1	4,805
50	500	8.4	8.4	15.1	1,065

Table S.2: varied simulation pressures corresponded to respective number of molecules in gas mixture baths as well as simulation box dimensions required to achieve target pressure calculated for ideal gas conditions.

Simulation pressure (bar)	Number of CO ₂ molecules	Number of balance molecules	X-direction length (nm)	Y-direction length(nm)	Z-direction length (nm)	Simulation box volume (nm ³)
0.2	1	19	8.4	8.4	68.1	4,805
0.5	2	48	8.4	8.4	68.1	4,805
1	5	95	8.4	8.4	68.1	4,805
5	25	475	8.4	8.4	68.1	4,805
50	25	475	8.4	8.4	15.1	1,065

Figures and Figure captions:

Figure S.2: permeation and sorption profiles of CO_2 at (a) 0.2 bar, (b) 0.5 bar, (c) 1 bar, (d) 5 bar, and (e) 50 bar with respect to a rigid 4 x 4 x 3 MIL-160 membrane.

Figure S.3: permeation and sorption profiles of CH_4 at (a) 0.2 bar, (b) 0.5 bar, (c) 1 bar, (d) 5 bar, and (e) 50 bar with respect to a rigid 4 x 4 x 3 MIL-160 membrane.

Figure S.4: permeation and sorption profiles of SO_2 at (a) 0.2 bar, (b) 0.5 bar, (c) 1 bar, (d) 5 bar, and (e) 50 bar with respect to a rigid 4 x 4 x 3 MIL-160 membrane.

Figure S.5: permeation and sorption profiles of NO_2 at (a) 0.2 bar, (b) 0.5 bar, (c) 1 bar, (d) 5 bar, and (e) 50 bar with respect to a rigid 4 x 4 x 3 MIL-160 membrane.

Figure S.6: permeation and sorption profiles of NO at (a) 0.2 bar, (b) 0.5 bar, (c) 1 bar, (d) 5 bar, and (e) 50 bar with respect to a rigid $4 \times 4 \times 3$ MIL-160 membrane.

Figure S.7: permeation (dashed line) and sorption (solid line) profiles of CO_2 (black) and CH_4 (blue) at (a) 0.2 bar, (b) 0.5 bar, (c) 1 bar, and (d) 5 bar with respect to a rigid 4 x 4 x 3 MIL-160 membrane.

Figure S.8: permeation (dashed line) and sorption (solid line) profiles of CO_2 (black) and SO_2 (blue) at (a) 0.2 bar, (b) 0.5 bar, (c) 1 bar, and (d) 5 bar with respect to a rigid 4 x 4 x 3 MIL-160 membrane.

Figure S.9: permeation (dashed line) and sorption (solid line) profiles of CO_2 (black) and NO_2 (blue) at (a) 0.2 bar, (b) 0.5 bar, (c) 1 bar, and (d) 5 bar with respect to a rigid 4 x 4 x 3 MIL-160 membrane.

Figure S.10: permeation (dashed line) and sorption (solid line) profiles of CO_2 (black) and NO (blue) at (a) 0.2 bar, (b) 0.5 bar, (c) 1 bar, and (d) 5 bar with respect to a rigid 4 x 4 x 3 MIL-160 membrane.