Supplementary Information

MXene quantum dots rivet reinforced Ni-Co LDH for boosting

electrochemical activity and cycling stability

Lili Song, ^{‡a} Shifan Zhu, ^{‡a} Le Tong ^a, Wandi Wang ^a, Chun Ouyang ^{b,c}, Feng Xu ^c and Yuqiao Wang

^{a.} Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China

^{b.} School of Material Science and Engineering, Jiangsu University of Science and Technology,

Jiangsu 212003, China

^{c.} CETC Maritime Electronics Research Institute Co., Ltd., Ningbo Zhejiang 315000, China

[‡] These authors contributed equally to this work.

* Corresponding author. E-mail address: yqwang@seu.edu.cn (Y. Wang)

Fig. S1. (a, b) Calculated models of primary Ni-Co LDH and Ni-Co LDH@MQDs. (c, d) ELF mapping and calculated net charge of Ni, Co and O atoms in the primary Ni-Co LDH. (e, f) PDOS of the Ni-Co LDH and Ni-Co LDH@MQDs.

Fig. S2. (a) Physical diagram of MQDs aqueous solution. (b) Photoluminescence of MQDs under365 nm UV light. (c) Schematic illustration of the preparation Ni-Co LDH@MQDs

Fig. S3. (a) SEM image of Ni-Co LDH. (b) EDS spectrum and the table of element content. (c) uniform distribution (C, O) in Ni-Co LDH@MQDs.

Fig. S4. The high-angle annular dark-field (HADDF)-STEM image and elemental mapping images.

Fig. S5. The element contents of Ni-Co LDH@MQDs in the STEM image at Fig. S4.

Fig. S6. XRD patterns of Ni-Co LDH and Ni-Co LDH@MQDs on Ni foam.

Fig. S7. FT-IR spectrum of Ni-Co LDH@MQDs.

Fig. S8. (a) CV curves at a scan rate of 20 mV s⁻¹. (b) GCD profiles at a current density of 1 A g⁻¹.
(c) CV curves at different scan rates and (d) GCD profiles at different current densities of Ni-Co LDH@MQDs. (e) Cyclic performance of Ni-Co LDH and Ni-Co LDH@MQDs at a current density 6 A g⁻¹. (f) SEM image of Ni-Co LDH@MQDs after 5000 cycles at 6 A g⁻¹.

Fig. S9. The variation of cathodic/anodic peak currents for the Ni-Co LDH@MQDs as a function of

the square root of scan rates.

Fig. S10. (a, b) Capacitive and diffusion-controlled contributions of Ni-Co LDH and Ni-Co LDH@MQDs at 20 mV s⁻¹.

Fig. S11. (a) CV curves of Ni-Co LDH@MQDs//AC in different scan voltage windows at scan rate of 50 mV s⁻¹ (b) CV curves of Ni-Co LDH@MQDs//AC at different scan rates. (c) GCD profiles and (d) Capacitors of Ni-Co LDH@MQDs//AC at different current densities.

Table S1. The simulated EIS data.							
Samples	R _s (Ohm/cm ²)	R _{ct} (Ohm/cm ²)	C (mF/cm²)	W (s ^{1/2} /cm ²)			
Ni-CoLDH	1.04	2.54	1.97	0.0193			
Ni-CoLDH @ MQDs	0.76	1.52	2.75	0.0214			

Electrode	Energy density (W h kg ⁻¹)	Power density (W kg ⁻¹)	Ref.
Co ₉ S ₈ /NS-C//AC	14.8	681	Ref. 1
CuCo ₂ S ₄ //AC	46.1	992	Ref. 2
FeCo2O4@MnO2//AC	22.2	978	Ref. 3
Co _{0.85} Se//AC	39.0	789	Ref. 4
$Ni_3S_2@d-Ti_3C_2//AC$	23.6	4004	Ref. 5
MnO ₂ //AC	32.8	178	Ref. 6
Co/Cu-MOF/Cu ₂₊₁ O//AC	25.7	740.4	Ref. 7
CoFe ₂ O ₄ //AC	22.9	900	Ref. 8
Ni(OH)2@AC@CNT//AC	32.3	505	Ref. 9
Ni-Co LDH@MQDs//AC	60.7	698	This work

 Table S2. Comparison of energy density vs power density of reported supercapacitors.

Devices	Current density	Cycle performance	Ref.
Ni-Co LDH@MQDs//AC	6 A g ⁻¹	98.6 after 10000 cycles	This work
ZnNi-CoP/NF//PPD-rGOs	10 A g ⁻¹	89% after 8000 cycles	Ref. 10
NiO/Co ₃ O ₄ @NF//AC	5 A g ⁻¹	82.5% after 12000 cycles	Ref. 11
NiCo ₂ O ₄ /NF//AC	1 A g ⁻¹	81.1% after 5000 cycles	Ref. 12
CF@NiCoZnLDH/Co ₉ S ₈ -	3 A g ⁻¹	95.3% after 8000 cycles	Ref. 13
QD//CNS-SCN	C	5	
NiCoP/Ni-CoOH//PC	2 A g ⁻¹	92% after 1000 cycles	Ref. 14
L-Ni(OH)2@PPy//G-30PPPy	3 A g ⁻¹	91.5% after 6000 cycles	Ref. 15
NCLP@NiMn-LDH//AC	10 A g ⁻¹	80% after 10000 cycles	Ref. 16
KCu7S4@NiMn LDH//AG	2.5 A g ⁻¹	84.8% after 16000 cycles	Ref. 17
MnNi-CoCH/CF//AC	5 A g ⁻¹	83.86% after 8000 cycles	Ref. 18
(Ni,Co)Se ₂ /Ni-CoLDH//PC	5 A g ⁻¹	90% after 3000 cycles	Ref. 19
NiCo ₂ S ₄ //AC	10 A g ⁻¹	92.0% after 10000 cycles	Ref. 20
P-Co ₃ O ₄ @P, N-C//Co@P, N-C	15 A g ⁻¹	92.9% after 5000 cycles	Ref. 21
Ni-Co LDH//RGO	5 A g ⁻¹	82% after 5000 cycles	Ref. 22
NiCo2Al-LDH//CC@ZPC	5 A g ⁻¹	91.2% after 15000 cycles	Ref. 23
HU-CuCo ₂ S ₄ //AC	10 A g ⁻¹	85.0% after 10000 cycles	Ref. 24

Table S3. Comparison of the cycling stability of other reported devices.

Reference

- S. Zhang, D. Li, S. Chen, X. Yang, X. Zhao, Q. Zhao, S. Komarneni, D. Yang, *J. Mater. Chem. A*, 2017, 5, 12453–12461.
- 2 L. Q. Fan, F. Pan, Q. M. Tu, Y. Gu, J. L. Huang, Y. F. Huang and J. H. Wu, Int. J. Hydrogen Energy, 2018, 43, 23372–23381.
- 3 L. Lin, S. Tang, S. Zhao, X. Peng and N. Hu, *Electrochim. Acta*, 2017, 228, 175–182.
- 4 C. Gong, M. Huang, P. Zhou, Z. Sun, L. Fan, J. Lin and J. Wu, *Appl. Surf. Sci*, 2016, 362, 469–476.
- 5 Y. Zhao, J. Guo, A. Liu and T. Ma, J. Alloys Compd., 2020, 814, 152271.
- 6 J. Yang, L. Lian, H. Ruan, F. Xie and M. Wei, *Electrochim. Acta*, 2014, 136, 189–194.
- 7 X. Cao, L. Cui, B. Liu, Y. Liu, D. Jia, W. Yang, J. M. Razal and J. Liu, *J. Mater. Chem. A*, 2019,
 7, 3815–3827.
- 8 H. Gao, J. Xiang and Y. Cao, Appl. Surf. Sci., 2017, 413, 351–359.
- 9 L. Sui, S. Tang, Y. Chen, Z. Dai, H. Huangfu, Z. Zhu, X. Qin, Y. Deng and G. M. Haarberg, *Electrochim. Acta*, 2015, 182, 1159–1165.
- 10 J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao, S. Dai, H. H. Wu, K. Zhang, D. Ding, Y. Wu, M. Liu and M. S. Wang, *Nano Energy*, 2019, **57**, 22–33.
- 11 S. Adhikari, S. Selvaraj, S. H. Ji and D. H. Kim, Small, 2020, 16, 2005414.
- 12 X. Zhang, F. Yang, H. Chen, K. Wang, J. Chen, Y. Wang and S. Song, Small, 2020, 16, 2004118.
- 13 Q. Yang, Q. Wang, Y. Long, F. Wang, L. Wu, J. Pan, J. Han, Y. Lei, W. Shi and S. Song, Adv. Energy Mater., 2020, 10, 1903193.
- 14 X. Li, H. Wu, A. M. Elshahawy, L. Wang, S. J. Pennycook, C. Guan and J. Wang, Adv. Funct.

Mater., 2018, 28, 1800036.

- 15 W. He, G. Zhao, P. Sun, P. Hou, L. Zhu, T. Wang, L. Li, X. Xu and T. Zhai, *Nano Energy*, 2019, 56, 207–215.
- 16 H. Liang, J. Lin, H. Jia, S. Chen, J. Qi, J. Cao, T. Lin, W. Fei and J. Feng, J. Mater. Chem. A, 2018, 6, 15040–15046.
- 17 X. L. Guo, J. M. Zhang, W. N. Xu, C. G. Hu, L. Sun and Y. X. Zhang, J. Mater. Chem. A, 2017,
 5, 20579–20587.
- 18 X. Cao, Y. Liu, Y. Zhong, L. Cui, A. Zhang, J. M. Razal, W. Yang and J. Liu, J. Mater. Chem. A, 2020, 8, 1837–1848.
- 19 X. Li, H. Wu, C. Guan, A. M. Elshahawy, Y. Dong, S. J. Pennycook and J. Wang, *Small*, 2019, 15, 1803895.
- 20 B. Y. Guan, L. Yu, X. Wang, S. Song and X. W. D. Lou, Adv. Mater. 2017, 29, 1605051.
- 21 S. Liu, Y. Yin, Y. Shen, K. S. Hui, Y. T. Chun, J. M. Kim, K. N. Hui, L. Zhang and S. C. Jun, *Small*, 2020, 16, 1906458.
- 22 H. Chen, L. Hu, M. Chen, Y. Yan and L. Wu, Adv. Funct. Mater., 2014, 24, 934-942.
- 23 X. Gao, X. Liu, D. Wu, B. Qian, Z. Kou, Z. Pan, Y. Pang, L. Miao and J. Wang, Adv. Funct. Mater., 2019, 29, 1903879.
- 24 H. Jia, Y. Cai, Z. Wang, X. Zheng, C. Li, H. Liang, J. Qi, J. Cao, J. Feng and W. Fei, *Inorg. Chem. Front.*, 2020, 7, 603–609.