## Single crystal growth, structural, magnetic, and magnetoelectric properties in spin-frustrated α-Cu<sub>5</sub>O<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>

D. Chandrasekhar Kakarla<sup>1, 2\*</sup>, Z. H. Yang<sup>1</sup>, H. C. Wu<sup>1</sup>, T. W. Kuo<sup>1</sup>, Ajay Tiwari<sup>1</sup>, W.-H. Li<sup>3</sup>,

C. H. Lee<sup>3</sup>, Y.-Y. Wang<sup>4</sup>, J-Y Lin<sup>4,5</sup>, C. K. Chang<sup>6</sup>, B. H. Chen<sup>6</sup>, C. W. Wang<sup>6</sup>, C. A. Lee<sup>2, 7</sup>, Mitch M. C. Chou<sup>2, 7</sup> and H. D. Yang<sup>1,2\*</sup>

<sup>1</sup>Department of Physics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan

<sup>2</sup>Center of Crystal Research, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan

<sup>3</sup>Department of Physics, National Central University, Chung-Li 30001, Taiwan

<sup>4</sup>Institute of Physics, National Chiao Tung University, Hsinchu 30010, Taiwan

<sup>5</sup>Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan

<sup>6</sup>National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan

<sup>7</sup>Department of Materials and Optoelectronic Science, National Sun Yat-sen University,

Kaohsiung, 80424, Taiwan



Fig. S1: EPMA images of  $\alpha$ -Cu<sub>5</sub>O<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>; for accuracy the data was collected on point scan on random places at three different single crystal of  $\alpha$ -Cu<sub>5</sub>O<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>.

| No.     | Cu      | Se      | 0        | Cl      | Total |
|---------|---------|---------|----------|---------|-------|
| 1       | 32.0158 | 12.3293 | 43.0512  | 12.6037 | 100   |
| 2       | 30.054  | 12.8664 | 44.1063  | 12.9733 | 100   |
| 3       | 28.795  | 13.9637 | 45.8389  | 11.4024 | 100   |
| 4       | 27.9015 | 11.2761 | 50.2272  | 10.5952 | 100   |
| 5       | 28.9878 | 13.0166 | 46.9311  | 11.0645 | 100   |
| 6       | 31.6869 | 11.1032 | 44.7326  | 12.4773 | 100   |
| 7       | 29.7797 | 13.5504 | 44.7885  | 11.8814 | 100   |
| 8       | 27.0996 | 10.0905 | 48.2853  | 14.5246 | 100   |
| 9       | 28.2651 | 13.4384 | 43.63    | 14.6665 | 100   |
| Minimum | 27.0996 | 10.0905 | 43.0512  | 10.5952 | 100   |
| Maximum | 32.0158 | 13.9637 | 50.2272  | 14.666  | 100   |
| Average | 29.3983 | 12.4038 | 45.73234 | 12.4658 | 100   |

Table S1: Shows the  $\alpha$ -Cu<sub>5</sub>O<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> EPMA quantitative elemental analysis; data was given in the atomic percentage.



Fig. S2: Variation of temperature-dependent  $\varepsilon'$  for  $\alpha$ -Cu<sub>5</sub>O<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> polycrystalline sample for 0 and 7 T, respectively.



Fig. S3: (a) Rietveld refinement of  $\alpha$ -Cu<sub>5</sub>O<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> at (a) 450 K and (b) 100 K, respectively



Fig. S4: Variation of the (a) lattice parameter (b) unit cell volume with respect to temperature for  $\alpha$ -Cu<sub>5</sub>O<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>