Supplementary Information

Monodispersed sodium hyaluronate microcapsules

for transdermal drug delivery systems

Hirotada Hirama^{1‡*}, Yuya Ishikura^{2‡}, Shinya Kano¹, Masanori Hayase², Harutaka Mekaru¹

¹ Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, Chiba 277-0882, Japan

² Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan

* Corresponding Author: E-mail: h.hirama@aist.go.jp

‡These authors contributed equally to this work.

Microchannel design

The microchannels were designed based on a previous report by Rotem et al.¹ (Figure S1).

Figure S1. Microchannel design, including microchannels with a depth of 75 μ m (scale bar = 2 mm).

Microcapsule pretreatment

The continuous phase around the microcapsules was replaced (Figure S2).

Figure S2. Microcapsule pretreatment procedure for microneedle preparation.

Microcapsules formed from droplets

Calcium chloride (CaCl₂) could not be used as a gelling agent because the sodium hyaluronate droplets were completely dissolved in its aqueous solution. (Figure S3). More than 20 h after the droplet was placed on the gel substrate, the droplet diameter became constant and shrinkage was completed (Figure S4).

Figure S3. Images in a beaker (where $CaCI_{2 aq.}$ was poured and sodium hyaluronate droplets were added) looking through the top. The base diameter of the beaker is approximately 4 cm.

Figure S4. Diameters of the droplets on the gel plate.

Microneedle characterization

A section of skin could not be penetrated by the MNs (Figure S5).

Figure S5. Histological cross-section of pig skin surface showing no penetration of the stratum corneum after MN insertion and removal (scale bar = $100 \ \mu$ m).

Droplet formation stability

A dispersed phase comprising 0.01 wt% SH aqueous solution and 0.5 mg/ml FITC-BSA was suitable (Table S1).

Table S1. Droplet formation stability at 0.1 and 0.01 wt% sodium hyaluronate. Droplets regarded as "stable" were monodispersed (CV: <10%), and those regarded as "unstable" were polydispersed (CV: >10%) (Scale bars = 100μ m).

Concentration of sodium hyaluronate solution (wt%)	Viscosity of sodium hyaluronate solution at 25.5 °C (mPa·s)	Dropletgeneration	Stability of droplet generation phenomena
0.1	21.4	-0 -0 -0.	Unstable ^{*1}
0.01	3.84	> 000000	Stable ^{*2}

*1 The occurrence of transition state was observed.

*2 No occurrence of transition state was observed .

REFERENCES

A. Rotem, O. Ram, N. Shoresh, R. A. Sperling, M. Schnall-Levin, H. D. Zhang, A. Basu, B. E. Bernstein, D. A. Weitz, High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics. *PLoS One* **2015**, *10* (5).