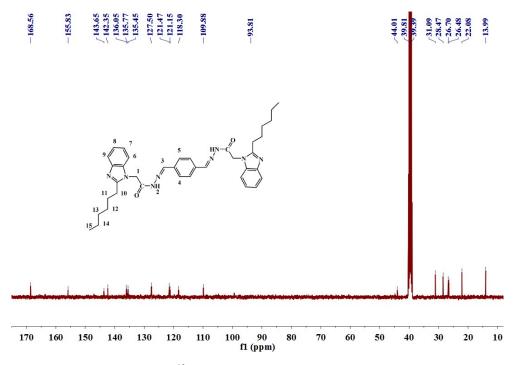

SUPPORTING INFORMATION

Regulation of bi-color fluorescence changes of AIE supramolecular


self-assembly gels by the interaction with Al³⁺ and energy transfer

Xinxian Ma^{*a}, Jinlong Yue^{#a}, Bo Qiao^a, Lili Zhou^a, Yang Gao^a, Yipei Wang^a, Yingshan Lai^a, Yutao Geng^a, Enke Feng^a, Minghua Liu^{*b}

College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.Fax: 86 954 2079637; Tel: 86 954 2079637; E-mail: maxinxian@163.com

Fig. S1. ¹H NMR spectrum of **BD** in DMSO- d_6

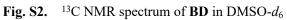


Fig. S3. ESI-MS spectrum of BD

Entry	Solvent	State ^a	CGC ^b (%)	T_{gel}^{c} (°C, wt %)
1	water	Р	\	\
2	cyclohexane	Р	\	\
3	petroleum ether	Р	\	\
4	THF	Р	\	\
5	CHCl ₃	Р	\	\
6	CH_2Cl_2	Р	\	\
7	acetone	Р	\	\
8	DMF	G	2.5	74(2.5%)
9	DMF-H ₂ O	G	0.5	95(0.5%)
10	DMSO	G	2	82(2%)
11	DMSO-H ₂ O	G	0.5	102(0.5%)
12	methanol	Р	\	\
13	ethanol	S	\	\
14	ethanol-H ₂ O	Р	\	\
15	ethanediol	Р	\	\
16	isopropanol	Р	\	\
17	n-butyl alcohol	Р	\	\
18	n-amyl alcohol	Р	\	\
19	isopentanol	Р	\	\
20	n-hexanol	Р	\	\
21	ethyl acetate	Р	\	\
22	acetonitrile	Р	\	\
23	CCl_4	Р	\	\

Table S1 Gelation properties of the supramolecular gel BDG

^a G, P and S denote gelation, precipitation and solution, respectively

 $^{\rm b}$ The critical gelation concentration (wt %, 10 mg/mL = 1.0%)

^c The gelation temperature (°C)

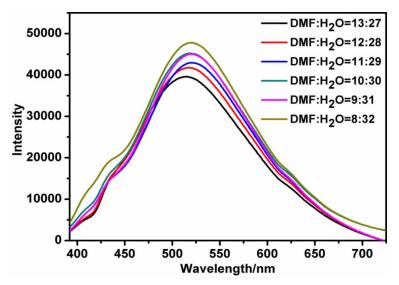


Fig. S4. fluorescent spectra of BDG with different water content $(0.5\%, \lambda_{ex} = 372 \text{ nm})$

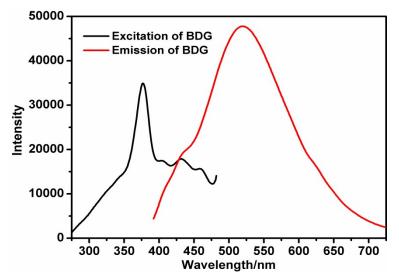


Fig. S5. Excitation spectrum and emission spectrum of BDG (0.5%, V_{DMF} : $V_{water} = 1 : 4$)

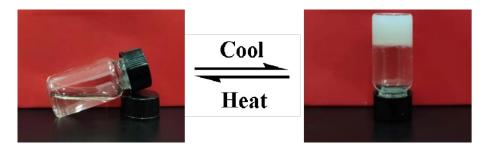


Fig. S6. Illustration for reversible gel-sol transformation of the BDG triggered by temperature (0.5%, V_{DMSO} : $V_{water} = 1 : 4$)

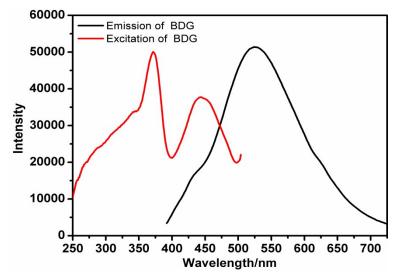
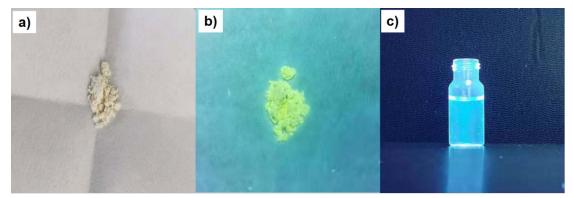



Fig. S7. Excitation spectrum and emission spectrum of BDG (0.5%, V_{DMSO} : $V_{water} = 1 : 4$)

Fig. S8. The photos of BD powder (25 °C) were taken under a) daylight and b) UV light, respectively. c) The photo of BD in DMF (1×10^{-4} M, 25°C) were taken under UV light

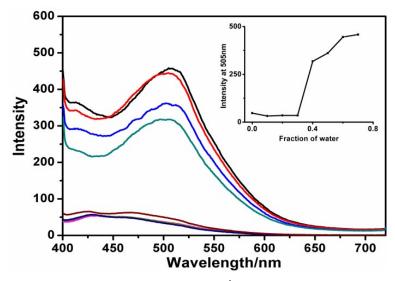


Fig. S9. Fluorescence spectra of BD (3 \times 10⁻⁴ M) in a DMF/H₂O mixed solution at different vol % ($\lambda_{ex} = 372$ nm). Inset: Fluorescence intensity of BD at 505 nm in the presence of different faction of water from 0 to 70%

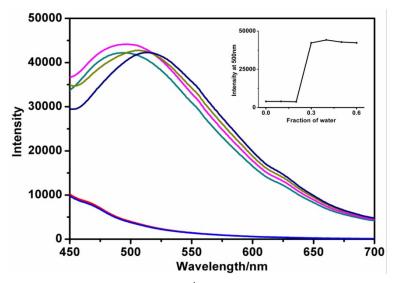


Fig. S10. Fluorescence spectra of BD (3×10^{-4} M) in a DMSO/H₂O mixed solution at different vol % ($\lambda_{ex} = 372$ nm). Inset: Fluorescence intensity of BD at 510 nm in the presence of different faction of water from 0 to 60%

Fig. S11. Fluorescence spectra ($\lambda_{ex} = 372 \text{ nm}$) of BDG (0.5%, $V_{DMF} : V_{water} = 1 : 4$) in the presence of various cations (10.0 equiv.). Respectively, using 0.1 M nitrate solution as the sources at room temperature

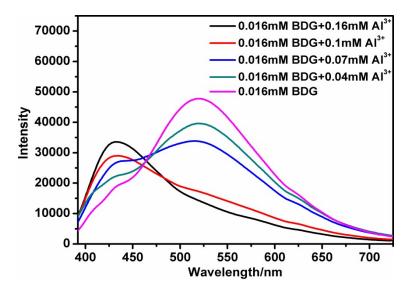


Fig. S12. Fluorescent titration spectra (λ_{ex} = 372 nm) of BDG (7.7 mM) upon addition of Al³⁺ in DMF/H₂O (V_{DMF} : V_{water} =1 : 4)

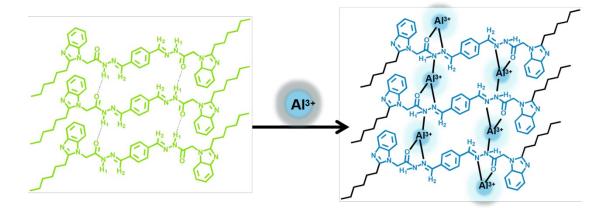


Fig. S13. Proposed sensing mechanism of BDG for Al³⁺

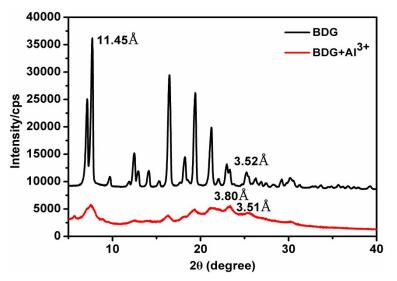


Fig. S14. The powder X-ray diffraction pattern of the xerogel BDG and BDG-Al

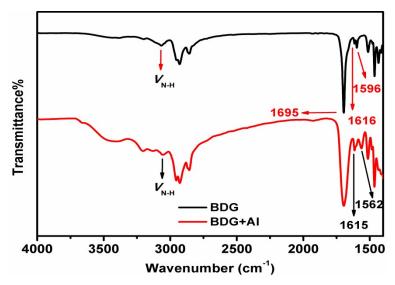
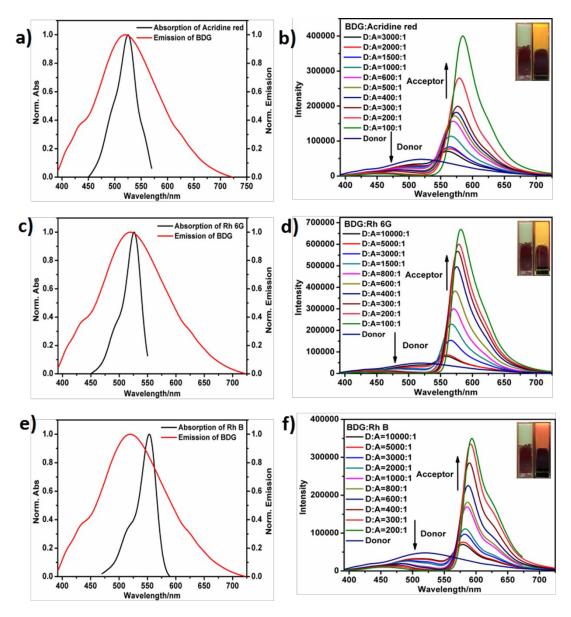



Fig. S15. FT-IR spectra of the xerogel BDG and BDG-Al

Fig. S16. Normalized emission spectrum of BDG (7.7 mM), absorption spectrum of (a) Acridine red (1×10^{-5} M), (c) Rh B (1×10^{-5} M) and (e) Rh 6G (1×10^{-5} M). Fluorescence spectra of BDG (7.7 mM) in gel with different concentrations of (b) Acridine red (77 μ M, $\lambda_{ex} = 372$ nm, Inset: photographs of BDG, BDG/Rh 6G) and (f) Rh B (38.5 μ M, $\lambda_{ex} = 372$ nm, Inset: photographs of BDG, BDG/Rh 6G) and (f) Rh B (38.5 μ M, $\lambda_{ex} = 372$ nm, Inset: photographs of BDG, BDG/Rh 6G) and (f) Rh B (38.5 μ M, $\lambda_{ex} = 372$ nm, Inset: photographs of BDG, BDG/Rh 6G) and (f) Rh B (38.5 μ M, $\lambda_{ex} = 372$ nm, Inset: photographs of BDG, BDG/Rh 6G) and (f) Rh B (38.5 μ M, $\lambda_{ex} = 372$ nm, Inset: photographs of BDG, BDG/Rh 6G) and (f) Rh B (38.5 μ M, $\lambda_{ex} = 372$ nm, Inset: photographs of BDG, BDG/Rh 6G) and (f) Rh B (38.5 μ M, $\lambda_{ex} = 372$ nm, Inset: photographs of BDG, BDG/Rh B under UV light)

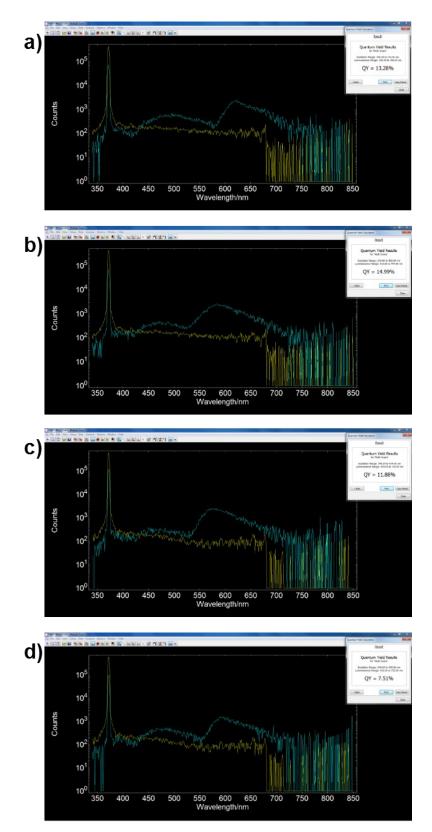
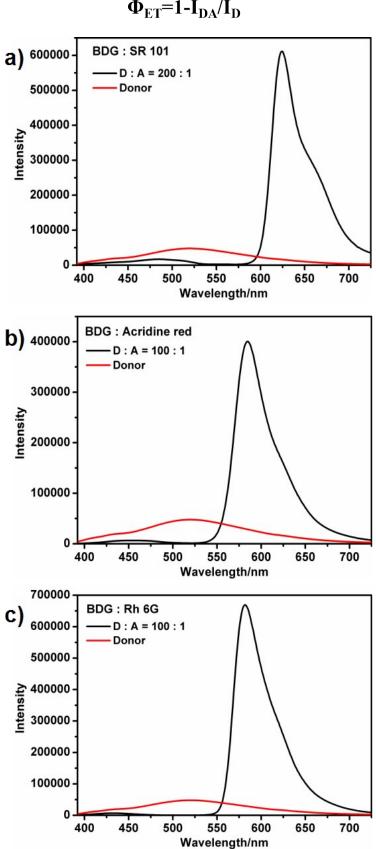
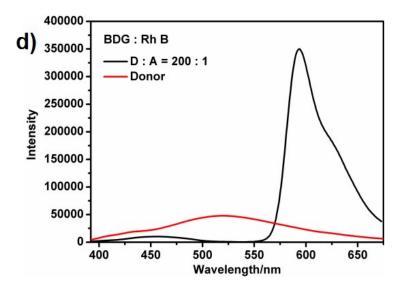




Fig. S17. Absolute fluorescence quantum yields ($\Phi_{f(abs)}$) of (a) BDG / SR 101 (7.7 mM / 38.5 mM), (b) BDG / acridine red (7.7 mM / 77 μ M), (c) BDG / Rh 6G (7.7 mM / 77 μ M) and (d) BDG / Rh B (7.7 mM / 38.5 μ M) (λ_{ex} = 372 nm) in DMF/H₂O

Energy-transfer efficiency, Φ_{ET} , the fraction of the absorbed energy that is transferred to the acceptor is experimentally measured as a ratio of the fluorescence intensities of the donor in the absence and presence of the acceptor (I_D and I_DA).¹

$$\mathbf{D}_{\mathrm{ET}} = 1 - \mathbf{I}_{\mathrm{DA}} / \mathbf{I}_{\mathrm{D}}$$

Fig. S18. Fluorescence spectra of a) BDG and BDG/SR 101 assembly, b) BDG and BDG/acridine red assembly, c) BDG and BDG/Rh 6G assembly and d) BDG and BDG/Rh B assembly ($\lambda_{ex} = 372 \text{ nm}$, [BDG] = 7.7 mM, [SR 101] = 38.5 μ M, [acridine red] = 77 μ M, [Rh 6G] = 77 μ M and [Rh B] = 38.5 μ M)

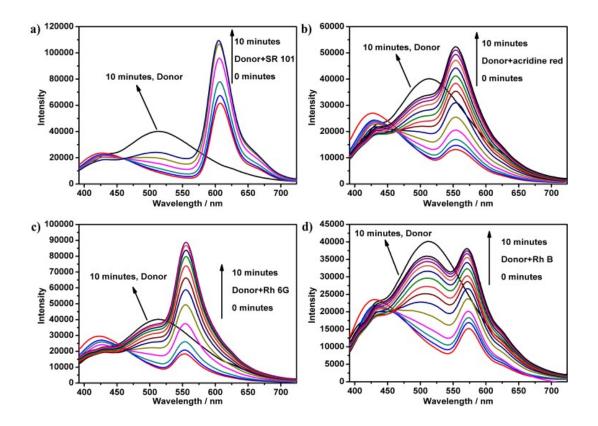


Fig. S19. Fluorescence spectra ($\lambda_{ex} = 372 \text{ nm}$) of a) BDG and BDG/SR 101, b) BDG/acridine red, c) BDG/Rh 6G and d) BDG/Rh B in mixed solutions ([BDG] = 2.5 mM, [SR 101] = 0.83 μ M, [acridine red] = 0.83 μ M, [Rh 6G] = 0.25 μ M and [Rh B] = 0.25 μ M, V_{DMF} : V_{water} = 1 : 4)

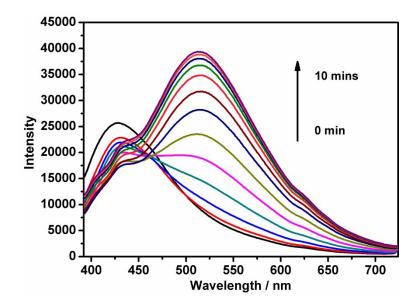
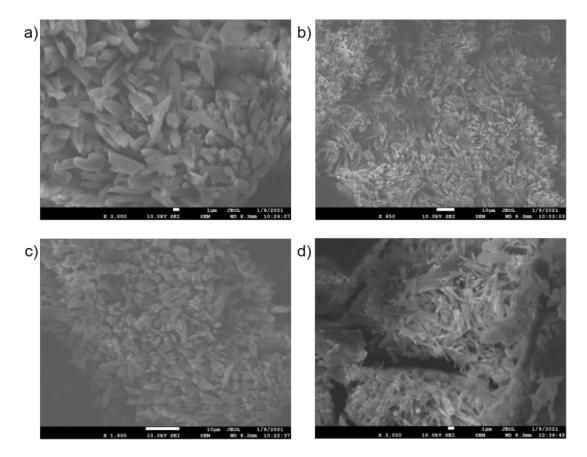
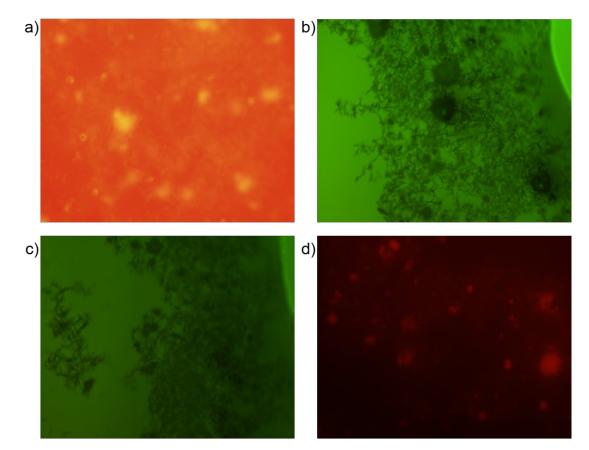




Fig. S20. Fluorescence spectra ($\lambda_{ex} = 372 \text{ nm}$) of BD during the gelation process from 95 °C to 25 °C ([BD] = 2.5 mM, V_{DMF} : V_{water} =1 : 4)

Fig. S21. FE-SEM micrographs of the xerogel of a) BDG/SR 101, b) BDG/acridine red, c) BDG/Rh 6G and d) BDG/Rh B. The gel was two days old before the images were taken. ([BDG] = 7.7 mM, [SR 101] = 38.5 μ M, [acridine red] = 77 μ M, [Rh 6G] = 77 μ M and [Rh B] = 38.5 μ M, V_{DMF} : V_{water} = 1 : 4)

Fig. S22. FOM images of a) BDG/SR 101, b) BDG/acridine red, c) BDG/Rh 6G and d) BDG/Rh B. ([BDG] = 7.7 mM, [SR 101] = 38.5 μ M, [acridine red] = 77 μ M, [Rh 6G] = 77 μ M and [Rh B] = 38.5 μ M, V_{DMF} : V_{water} =1 : 4)

(a) J. J. Li, Y. Chen, J. Yu, N. Cheng and Y. Liu, Adv. Mater., 2017, 29, 1701905-1701909;
(b) S. Guo, Y. Song, Y. He, X. Y. Hu and L. Y. Wang, Angew. Chem. Int. Ed., 2018, 57, 3163-3167;
(c) M. Hao, G. P. Sun, M. Z. Zuo, Z. Q. Xu, Y. Chen, X. Y. Hu and L. Y. Wang, Angew. Chem. Int. Ed., 2020, 59, 10095-10100.