Electronic Supplementary Information

For

Facile passivation of yellow light emitting CdSe QDs by polyethyleneimine in water to achieve bright white light emission

Bo-Yi Deng, Jin Wu, Jing Liu, Ying-Yi Ren, Feng Wang

Table of contents

- 1. Chemicals and synthesis
- 2. Instruments and methods
- 3. UV-Vis absorption and PL spectra
- 4. Component concentration effect and pH effect
- 5. TEM and CLSM images
- 6. Lifetimes
- 7. Reference

1. Chemicals and synthesis

Sodium sulfite, mercaptopropionic acid, sodium hydroxide, polyethyleneimine (PEI) (Mw = 60000, 50% aqueous solution), quinine, benzylamine, Se power, cadmium chloride hydrate (CdCl₂·2.5H₂O, 98%), sulfuric acid (H₂SO₄), hydrochloric acid (HCl) was purchased from commercial suppliers (Sinopharm chemical reagent co., LTD, Adamas, and Sigma-Aldrich) and used without further purification. N₂ (99.999%), CO₂ (99.99%) were purchased from commercial supplier (Huaerwen). All solvents of analytical grade were purchased from commercial suppliers and used without further purification.

PEI (Mw = 60k)

Figure S1. Graph of PEI structure

The synthesis of MPA-CdSe QDs

The MPA-CdSe QDs were synthesized according to the literature method with slight modification.^[1]First, Na₂SeSO₃ aqueous solution was prepared by following steps. Selenium powder (40 mg) was added into Na₂SO₃ aqueous solution (100 mL, 1.50 mmol) and the mixture was stirred at 130 °C until the solid powder disappeared. In another flask, CdCl₂ • 2.5H₂O (92 mg) and 3-mercaptopropionic acid (52 μ L) in deionized water (380 mL) was prepared. The pH of the solution was adjusted to 11 by NaOH (1 M) and then saturated by nitrogen. A 20 mL Na₂SeSO₃ solution was injected into the above solution. The mixture solution was stirred at 130 °C for 2.5 hours. The MPA-CdSe QDs as yellow solid was obtained $\frac{2}{12}$

via subsequently participation by isopropanol, centrifugation, and drying in vacuum.

2. Instruments and methods

High-resolution TEM images were obtained by Titan G2 60-300 with an image corrector high-resolution transmission electron microscopy system (HRTEM) operating at 300 kV. The Confocal Microscope images were recorded by Chameleon LSM. The X-ray photoelectron spectroscopy (XPS) measurements were conducted using AXIS SUPRA+ spectrophotometer with Al-Ka radiation. UV-Vis absorption spectra were recorded on a Shimadzu UV-2600 spectrophotometer in the range of 200-700 nm. The photoluminescence (PL) measurements were carried out by a RF-6000. The fluorescence lifetimes were measured by the QuantaMaster 8000.The pH measurements were determined with a Model pHS-3C meter (Mettler Toledo FE28, Swiss). The zeta potentials was measured by the Nano ZS90.

CdSe@PEI solution preparation

The CdSe@PEI aqueous solution was prepared by physical mixing of PEI and MPA-CdSe QDs with certain amount. The solid CdSe@PEI gel was obtained by freeze-drying of CdSe@PEI aqueous solution.

PLQY measurments

The PLQY values in this work were determined by using quinine as a reference (in $0.5 \text{ M H}_2\text{SO}_4$ aqueous solution) and calculated according to the equation following:

$$\frac{\Phi_s}{\Phi_r} = \left(\frac{A_r}{A_s}\right) * \left(\frac{D_s}{D_r}\right) * \left(\frac{n_s}{n_r}\right)$$

 Φ represents the quantum yield, A is the absorbance at the excitation

wavelength, D is emission area, and n is the refractive index. The reference quinine has a fluorescence quantum yield of 0.546 in a $0.5 \text{ M H}_2\text{SO}_4$ aqueous solution ^[2].

CO₂ fluorescent sensor experiments

The CO₂ fluorescent sensor experiments were carried out by cyclic bubbling CO₂ or N₂ into a CdSe@PEI aqueous solution ([CdSe] = 1.00×10^{-5} M, [PEI] = 5.00 mg mL^{-1}). The white light emission of the solution turns to yellow by bubbling CO₂ for 30s, the recovery of the white light emission needs to bubble N₂ for 50 mins.

3. UV-Vis absorption and PL spectra

Figure S2. (a) UV-Vis absorption and PL spectra of MPA-CdSe QDs in water (1.00 \times 10⁻⁵ M), excitation wavelength: 380 nm. (b) UV-Vis absorption of MPA-CdSe QDs (1.00 \times 10⁻⁵ M) and CdSe@PEI ([CdSe] = 1.00 \times 10⁻⁵ M, [PEI] = 5.00 mg mL⁻¹) in water.

Figure. S3 Change of CdSe@PEI ([CdSe] = 1.00×10^{-5} M, [PEI] = 5.00 mg mL⁻¹) PL enhancement from 0 h to 34 h, excitation wavelength: 380 nm. (b) The ratio of the band-edge exciton emission area (S₁) to surface-trap emission area (S₂) plots to time, and pH change of the solution during passivation process.

4. Component concentration effect and pH effect

Figure. S4 (a) PL spectrum of the CdSe@PEI aqueous solution with different PEI concentrations (0, 0.50, 1.00, 2.00, 3.00, 5.00, 7.00, 9.00 mg mL⁻¹), excitation wavelength: 380 nm. (b) CIE coordinates of the samples. (c) The digital picture of the samples.

Figure. S5 (a) PL spectrum of the CdSe@PEI aqueous solution with different CdSe concentrations $(1.00 \times 10^{-5} \text{ M}, 1.60 \times 10^{-5} \text{ M}, 2.14 \times 10^{-5} \text{ M}, 2.75 \times 10^{-5} \text{ M}, 3.30 \times 10^{-5} \text{ M})$, excitation wavelength: 380 nm. (b) CIE coordinates of the samples. (c) The digital picture of the samples.

Figure. S6 (a) PL spectrum of the CdSe aqueous solution $(1.00 \times 10^{-5} \text{ M})$ at different pH, excitation wavelength: 380 nm. (b) CIE coordinates of the samples. (c) The digital picture of the samples.

Figure. S7 (a) PL spectrum of the CdSe@PEI aqueous solutions ($[CdSe] = 1.00 \times 10^{-5}$ M, $[PEI] = 2.00 \text{ mg mL}^{-1}$) at different pH, excitation wavelength: 380 nm. (b) CIE coordinates of the samples. (c) The digital picture of the samples.

Figure. S8 (a) PL spectrum of the CdSe@PEI aqueous solutions ($[CdSe] = 1.00 \times 10^{-5}$ M, $[PEI] = 7.00 \text{ mg mL}^{-1}$) at different pH, excitation wavelength: 380 nm. (b) CIE coordinates of the samples. (c) The digital picture of the samples.

Figure. S9 (a) Emission spectrum of the white light LED. (b) CIE coordinates of the white light LED.

5. TEM and CLSM images

Figure. S10 (a-c) TEM images of CdSe@PEI ([CdSe] = 1.00×10^{-5} M, [PEI] = 5.00 mg mL⁻¹). (d-f) Confocal images of CdSe@PEI ([CdSe] = 1.00×10^{-5} M, [PEI] = 5.00 mg mL⁻¹) in an aqueous solution. (g-i) Confocal images of MPA-CdSe (1.00×10^{-5} M) in an aqueous solution.

6. Lifetimes

Entry	λ/nm	$ au_1$ / ns	A ₁	$ au_2$ / ns	A ₂	$ au_{ m av}$ / ns
CdSe	462	4.86	11.54	22.00	0.14	5.77
	602	35.72	0.73	267.57	0.12	163.06
PEI-CdSe	464	26.56	1.16	134.61	0.32	89.98
	562	50.00	0.70	227.90	0.47	183.96

Table S1. The fitting lifetimes of MPA-CdSe and CdSe@PEI in aqueous solutions

7. Reference

- [1] Y.-S. Park, A. Dmytruk, I. Dmitruk, A. Kasuya, Y. Okamota, N. Kaji, M. Toeshi,
 Y. Baba, *J. Phys. Chem. C*, 2010, **114**, 18834-18840.
- [2] C. Wang, H. Zhang, J. Zhang, N. Lv, M. Li, H. Sun, B. Yang, J. Phys. Chem. C, 2008, 112, 6330-6336.