Supporting Information

Construction of Chemically Self-Charging Aqueous Zinc Ion Batteries Based on Defect Coupled Nitrogen modulation of Zinc Manganite Vertical Graphene Arrays

Wenda Qiu,‡^{*ab} Zhenchao Lin,‡^a Hongbing Xiao,^a Guoming Zhang,^a Hong Gao,^a Huajie Feng^{*c} and Xihong Lu^b

- ^a Guangdong Industry Polytechnic, 152 Xingang West Road, Guangzhou 510300, China.
- ^b MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, China.
- ^c Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

*Corresponding Author. E-mail: qiuwd3@mail3.sysu.edu.cn (W. Qiu); Fenghuajiehk@163.com (H. Feng).

[‡]Wenda Qiu and Zhenchao Lin contributed equally to this work.

Calculations:

The areal cell capacitances (C_{cell-a}) were calculated from the discharge curve using the following equations:

$$C_{cell-a} = \frac{\int_{0}^{\Delta t} I \times dt}{S}$$

where I (mA) is the applied discharging current, Δt (h) is the discharging time and S (cm²) is the area of cell (0.5 cm²).

(1)

Specific capacities (C_{cell-s}) of the cell were estimated from the discharge curve using the following equations:

$$C_{cell-s} = \frac{\int_{0}^{\Delta t} I \times dt}{m}$$

(2)

where C_{cell-s} (mA h g⁻¹) is the specific capacity of the H-ZMO NTAs//Zn battery, I (mA) is the applied discharging current, Δt (h) is the discharging time and m (g) is the mass of the active material of H-ZMO NTAs (3.2 mg cm⁻²).

Specific energy density E and specific power density P of the cell were obtained from the following equations:

$$E = C_{cell-s} * \Delta V$$

$$P = \frac{C_{cell-s} * \Delta V}{1000 * \Delta t}$$
(3)

(4)

where E (Wh kg⁻¹) is the energy density, C_{cell-s} is the specific capacity obtained from Equation (2) and ΔV (V) is the voltage window. P (kW kg⁻¹) is the specific power density and Δt (h) is the discharging time. The chemical diffusion coefficient of Zn^{2+} can be calculated based on the following equation:

$$D_{GITT} = \frac{4}{\pi\tau} \left(\frac{n_m V_m}{s}\right)^2 \left(\frac{\Delta E_s}{\Delta E_t}\right)^2 \tag{5}$$

Here, τ (s) is the duration of the current pulse; $n_{\rm m}$ (mol) is the number of moles; $V_{\rm m}$ (cm³ mol⁻¹) is the molar volume of the electrode; S (cm²) is the electrode/electrolyte contact area; $\Delta E_{\rm s}$ is the steady state voltage change due to the current pulse, and $\Delta E_{\rm t}$ is the voltage change during the constant current pulse, eliminating the *iR* drop.

Figure S1. XRD patterns of $ZnMn_2O_4/VG$ and N- $ZnMn_2O_{4-x}/VG$.

Figure S2. Raman spectra of $ZnMn_2O_4/VG$ and $N-ZnMn_2O_{4-x}/VG$.

Figure S3. XPS survey spectra of $ZnMn_2O_4/VG$ and N- $ZnMn_2O_{4-x}/VG$.

Figure S4. Core-level Mn 3s XPS spectra of $ZnMn_2O_4/VG$ and N-ZnMn_2O_{4-x}/VG.

Figure S5. Core-level Zn 2p XPS spectra of $ZnMn_2O_4/VG$ and N-Zn Mn_2O_{4-x}/VG .

Figure S6. Mn K-edge XPS spectra of $ZnMn_2O_4/VG$ and N- $ZnMn_2O_{4-x}/VG$.

Figure S7. Mott–Schottky plots of $ZnMn_2O_4/VG$ and N- $ZnMn_2O_{4-x}/VG$.

Figure S8. GCD curves of the (a) ZnMn₂O₄/VG and (b) N-ZnMn₂O_{4-x}/VG batteries.

Figure S9. (a) CV curves, (b) log (i) vs. log (v) at each peak in (a), and (c) surface

capacitive contribution of the $ZnMn_2O_4/VG$ electrode. (d) CV curves, (e) log (*i*) vs. log (v) at each peak in (e), and (f) surface capacitive contribution of the N-ZnMn_2O_4.

Figure S10. The cycling performance of N-ZnMn₂O_{4-x}/VG//Zn battery tested at 0.1, 0.5 and 3.0 A g^{-1} .

Figure S11. Electrochemical performance of N-Zn_{1-x}Mn₂O_{4-x}/VG//Zn batteries after the N-ZnMn₂O_{4-x}/VG electrodes are oxidized in deionized water for different times. (a) The galvanostatic discharge curves of N-Zn_{1-x}Mn₂O_{4-x}/VG//Zn batteries at 0.1 A g⁻¹.
(b) Effect of the oxidation time on OCV and discharge capacity of N-Zn_{1-x}Mn₂O_{4-x}/VG//Zn batteries.

Figure S12. The chemical charging/galvanostatic discharging curves of N-Zn₁. $_xMn_2O_{4-x}/VG//Zn$ batteries at different chemically charge states (dotted lines: chemical charging for different times. Solid lines: galvanostatic discharging at 0.1 A g^{-1}).

Figure S13. Cycle stability of N-Zn_{1-x}Mn₂O_{4-x}/VG//Zn battery at 0.1 A g^{-1} after the N-

ZnMn₂O_{4-x}/VG electrode is oxidized in deionized water for 3 h.

Figure S14. Calculational lattice spacing of (003) and (211) plane of N-ZnMn₂O_{4-x}/VG electrodes after being oxidized by O₂ for different times.

Cathodes	Capacity (mA h g ⁻¹)	Rate performance	Cycling stability (cycles)	Ref.
N-ZnMn ₂ O _{4-x} /VG	222 (0.1 A g ⁻¹)	61.2% (0.1 to 3 A g ⁻¹)	97.6% (3000)	This
				work
ZnMn ₂ O ₄ NDs/rGO	185 (0.1 A g ⁻¹)	$60.5\% (0.1 \text{ to } 5 \text{ A g}^{-1})$	72.4% (400)	[1]
ZnO-MnO@C	219 (0.1 A g ⁻¹)	$60.3\% (0.1 \text{ to } 3 \text{ A g}^{-1})$	84% (2000)	[2]
Hollow porous	112 (0 1 A ~ ⁻¹)	$570/(0.1 \text{ to } 2.2 \text{ A s}^{-1})$	No pogligihla	[2]
ZnMn ₂ O ₄	112 (0.1 A g ⁻)	5770 (0.1 to 5.2 A g ⁻)		[3]
ZMO@Ti ₃ C ₂ T _x	172.6 (0.1 A g ⁻¹)	$48.9\% (0.1 \text{ to } 4 \text{ A } \text{g}^{-1})$	92.4% (5000)	[4]

 Table S1. Comparison of zinc storage performance of based cathodes.

ZMO/C	150 (0.05 A g ⁻¹)	48% (0.05 to 2 A g^{-1})	94% (500)	[5]
ZMO@PCPs	$177 (0.1 \text{ A g}^{-1})$	48% (0.1 to 4.0 A g^{-1})	90.3% (2000)	[6]
ZMO microrods	180 (0.1 A g ⁻¹)	47.8% (0.1 to 2.4 A g ⁻¹)	79% (3000)	[7]
ZMO	230 (0.5 A g ⁻¹)	43.9% (0.5 to 8 A g ⁻¹)	75% (2000)	[8]
rGO@HM-ZMO	116.7 (0.1 A g ⁻¹)	39.1% (0.1 to 2 A g^{-1})	No negligible	[9]
ZnMn ₂ O ₄	190.4 (0.2 A g ⁻¹)	32.6% (0.2 to 6.4 A g^{-1})	94.4% (500)	[10]
ZnMn ₂ O ₄ @N-rGO	204.4 (0.01 A g ⁻¹)	32.2% (0.01 to 1.5 A g^{-1})	84.7% (600)	[11]
OD-ZMO@PEDOT	221 (0.083 A g ⁻¹)	28.3% (0.083 to 1.66 A g ⁻¹)	93.8% (300)	[12]
ZnMn ₂ O ₄ /Mn ₂ O ₃	130 (0.1 A g ⁻¹)	22.3% (0.1 to 6.4 A g ⁻¹)	No negligible	[13]

References

- 1 Z. Yao, D. Cai, Z. Cui, Q. Wang and H. Zhan, Ceram. Int., 2020, 46, 11237.
- S. Islam, M.H. Alfaruqi, D.Y. Putro, S. Park, S. Kim, S. Lee, M.S. Ahmed, V.
 Mathew, Y.K. Sun and J.Y. Hwang, *Adv. Sci.*, 2021, 8, 2002636.
- X. Wu, Y. Xiang, Q. Peng, X. Wu, Y. Li, F. Tang, R. Song, Z. Liu, Z. He and X.
 Wu, J. Mater. Chem. A, 2017, 5, 17990.
- 4 M. Shi, B. Wang, Y. Shen, J. Jiang, W. Zhu, Y. Su, M. Narayanasamy, S.

Angaiah, C. Yan and Q. Peng, Chem. Eng. J., 2020, 399, 125627.

- 5 N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu and J. Chen, *J. Am. Chem. Soc.*, 2016, **138**, 12894.
- 6 C. Yang, M. Han, H. Yan, F. Li, M. Shi and L. Zhao, J. Power Sources, 2020,
 452, 227826.
- V. Soundharrajan, B. Sambandam, S. Kim, S. Islam, J. Jo, S. Kim, V. Mathew, Y.k. Sun, J. Kim, *Energy Storage Mater.*, 2020, 28, 407.
- 8 T.H. Wu, and W.Y. Liang, ACS Appl. Mater. Interfaces, 2021, 13, 23822.
- 9 L. Chen, Z. Yang, H. Qin, X. Zeng, J. Meng and H. Chen, *Electrochim. Acta*, 2019, 317, 155.
- 10 L. Yan, X. Zeng, Z. Li, X. Meng, D. Wei, T. Liu, M. Ling, Z. Lin and C. Liang, Mater. Today Energy, 2019, 13, 323.
- Y. Tao, Z. Li, L. Tang, X. Pu, T. Cao, D. Cheng, Q. Xu, H. Liu, Y. Wang and Y. Xia, *Electrochim. Acta*, 2020, **331**, 135296.
- 12 H. Zhang, J. Wang, Q. Liu, W. He, Z. Lai, X. Zhang, M. Yu, Y. Tong and X. Lu, *Energy Storage Mater.*, 2019, 21, 154.
- S. Yang, M. Zhang, X. Wu, X. Wu, F. Zeng, Y. Li, S. Duan, D. Fan, Y. Yang, X. Wu, *Electroanaly. Chem.*, 2019, 832, 69.