Crystal Field-induced Lattice Expansion upon Reversible Oxygen

Uptake/Release in YbMn_xFe_{2-x}O₄

Tianyu Li^a, Rishvi Jayathilake^a, Lahari Balisetty^a, Yuan Zhang^a, Brandon Wilfong^{ab}, Timothy Diethrich^a, Efrain Rodriguez^{*ab}

^aDepartment of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2115, USA

^bMaryland Quantum Materials Center, University of Maryland, College Park, Maryland 20742, USA

Electronic Supplementary Information

Figures

Figure S1. High-resolution synchrotron X-ray powder diffraction pattern and the Rietveld refinement fit of R phase YbMn_{0.75}Fe_{1.25}O₄ (a) and the O phase YbMn_{0.75}Fe_{1.25}O₄₊₅ (b). R phase YbMn_{0.75}Fe_{1.25}O₄ is refined with the R^{3m} symmetry and O phase YbMn_{0.75}Fe_{1.25}O_{4.5} is refined with the P^{3} symmetry. Small amount of YbMnO₃ and Yb₂Fe₃O₇ exists in the samples (indicated by deep blue and cane tick marks)

Figure S2. High-resolution synchrotron X-ray powder diffraction pattern and the Rietveld refinement fit of R phase YbMn_{0.5}Fe_{1.5}O₄ (a) and the O phase YbMn_{0.5}Fe_{1.5}O_{4.5} (b). R phase YbMn_{0.5}Fe_{1.5}O₄ is refined with the $R^{3}m$ symmetry and O phase YbMn_{0.5}Fe_{1.5}O_{4.5} is refined with the P^{3} symmetry. Small amount of Yb₂O₃ exists in the samples (indicated by green tick marks)

Figure S3. High-resolution synchrotron X-ray powder diffraction pattern and the Rietveld refinement fit of R phase YbMn_{0.25}Fe_{1.75}O₄ (a) and the O phase YbMn_{0.25}Fe_{1.75}O_{4.5} (b). R phase YbMn_{0.25}Fe_{1.75}O₄ is refined with the $R^{3}m$ symmetry and O phase YbMn_{0.25}Fe_{1.75}O_{4.5} is refined with the P^{3} symmetry. Small amount of Yb₂O₃ exists in the samples (indicated by green tick marks).

Figure S4. Comparison of Fe 2p XPS spectra between of R phase YbMn_xFe_{2-x}O₄ and the O phase YbMn_xFe_{2-x}O_{4.5}: a) x=1, b) x=0.75, c) x=0.5, d) x=0.25. Upper figures are the spectra from R phase YbMn_xFe_{2-x}O₄. Lower figures are the spectra from O phase YbMn_xFe_{2-x}O_{4.5}. All Fe $2p_{3/2}$ spectra can be well fitted with Fe³⁺ profile.

Figure S5. Comparison of Mn 2p XPS spectra between of R phase YbMn_xFe_{2-x}O₄ and the O phase YbMn_xFe_{2-x}O_{4.5}: a) x=1, b) x=0.75, c) x=0.5, d) x=0.25. Upper figures are the spectra from R phase YbMn_xFe_{2-x}O₄. Lower figures are the spectra from O phase YbMn_xFe_{2-x}O_{4.5}.

Figure S6. Comparison of O1s XPS spectra between of R phase YbMn_xFe_{2-x}O₄ and the O phase YbMn_xFe_{2-x}O_{4.5}: a) x=1, b) x=0.75, c) x=0.5, d) x=0.25. Upper figures are the spectra from R phase YbMn_xFe_{2-x}O₄. Lower figures are the spectra from O phase YbMn_xFe_{2-x}O_{4.5}.

Figure S7. Isotherm heating thermogravimetric analysis (TGA) depicting the weight change as a function of time and temperature for R phases $YbMn_xFe_{2-x}O_4$ in the air.

Figure S8. Evolution of phase composition and lattice parameter of R phase $YbMn_xFe_{2-x}O_4$ (x=1) during heating in the air.

Figure S9. Evolution of phase composition and lattice parameter of R phase $YbMn_xFe_{2-x}O_4$ (x=0.75) during heating in the air.

Figure S10. Evolution of phase composition and lattice parameter of R phase $YbMn_xFe_{2-x}O_4$ (x=0.5) during heating in the air.

Figure S11. Evolution of phase composition and lattice parameter of R phase $YbMn_xFe_{2-x}O_4$ (x=0.25) during heating in the air.

Figure S12. Synchrotron X-ray powder diffraction pattern and the Rietveld refinement fit of a) YbMnFeO₄ in He at 600°C. b) YbMnFeO₄ in air at 600°C and converted to YbMnFeO_{4.5} c) O phase YbMnFeO_{4.5} in methane at 600°C and converted back to R phase YbMnFeO₄.

Figure S13. Evolution of phase composition (upper figures) and crystal grain size (lower figures) of YbMnFeO₄ during the cycling of air (oxidation) and methane (reduction).

Figure S14. SEM image of YbMnFeO₄ before and after cycling.

a) Before Cycling

Figure S15. SEM-EDS mapping of YbMnFeO₄ particle (a) before and (b) after cycling. Scale bar is 2 μ m.

Figure S16. The evolution of a) phase composition, b) crystal cell volume, c) a lattice parameter and d) c lattice parameter as function of time during cycling between oxidizing (air) and reducing (methane) atmospheres at 600 °C for YbMn_{0.75}Fe_{1.25}O₄ (x=1).

Figure S17. The evolution of a) phase composition, b) crystal cell volume, c) a lattice parameter and d) c lattice parameter as function of time during cycling between oxidizing (air) and reducing (methane) atmospheres at 600 °C for YbMn_{0.75}Fe_{1.25}O₄ (x=0.75).

Figure S18. The evolution of a) phase composition, b) crystal cell volume, c) a lattice parameter and d) c lattice parameter as function of time during cycling between oxidizing (air) and reducing (methane) atmospheres at 600 °C for YbMn_{0.25}Fe_{1.75}O₄ (x=0.25)

Figure S19. Influence of Mn substitution on Yb-O bond length of R phase $YbMn_xFe_{2-x}O_4$ (blue) and the O phase $YbMn_xFe_{2-x}O_{4.5}$ (red).

Figure S20. Rietveld refinement of powder neutron diffraction of reduced phases with varying amount of Mn doping: a) YbMnFeO₄, b) YbMn_{0.5}Fe_{1.5}O₄, c) YbMn_{0.25}Fe_{1.75}O₄, d) YbMn_{0.75}Fe_{1.25}O₄. Due to that not enough sample were used in the neutron diffraction measurement, the quality of data is poor.

Tables

		atom	occ	x	у	z	u11=u22	u33
YbMnFeO₄, <i>R-3</i> m								
0.03% Yb ₂ O ₃		Yb	0.968(1)	0	0	0	0.00180(7)	0.0294(2)
<i>Rwp</i> =10.934%		Fe/Mn	Fe 1/2 Mn 1/2	0	0	0.21578(2)	0.0059(1)	0.0091(3)
а	3.45799(2)	01	1	0	0	0.12801(7)	beq=1.80(4)	
C	25.6136(1)	02	0.985(3)	0	0	0.29297(6)	beq=0.62(4)	
YbMn _{0.75} Fe _{1.25} O ₄ , <i>R-3</i> m								
2.61% YDMINO ₃ , 2.15% Yb ₂ Fe ₃ O ₇		Yb	0.962(2)	0	0	0	0.0035(7)	0.0294(2)
<i>Rwp</i> =8.591%		Fe/Mn	Fe 5/8 Mn 3/8	0	0	0.21577(2)	0.0982(1)	0.0071(2)
а	3.45468(2)	01	1	0	0	0.1282(1)	beq=2.27(6)	
C	25.5295(2)	02	0.967(5)	0	0	0.29253(9)	beq=0.86(7)	
YbMn _{0.5} Fe _{1.5} O ₄ , <i>R-3</i> m								
0.48% Yb ₂ O ₃		Yb	0.9542(1)	0	0	0	0.00275(7)	0.03765(2)
Rwp=11.032%		Fe/Mn	Fe 3/4 Mn 1/4	0	0	0.21551(2)	0.0109(2)	0.0070(3)
а	3.46183(1)	01	1	0	0	0.12834(8)	beq=2.33(5)	
C	25.4049(1)	02	0.941(3)	0	0	0.29239(7)	beq=0.80(3)	
YbMn _{0.25} Fe _{1.75} O ₄ , <i>R</i> -3m								
0.32% Yb ₂ O ₃		Yb	0.956(1)	0	0	0	0.00225(8)	0.0389(2)
Rwp=10.259%		Fe/Mn	Fe 7/8 Mn 1/8	0	0	0.21531(1)	0.0126(2)	0.0106(2)
а	3.46100(1)	01	1	0	0	0.12815(7)	beq=2.31(4)	
c	25.26212(1)	02	0.948(4)	0	0	0.29174(7)	beq=0.72(3)	

Table S1. Structural parameters from Rietveld refinement for R phases $YbMn_xFe_{2-x}O_4$ (x=1, 0.75, 0.5, 0.25).

		atom	occ	x	у	z	u11=u22	u33	u12
YbMnFeO _{4.5} , <i>P-3</i>									
0.03% Yb ₂ O ₃		Yb	1	0	0	0	0.040(4)	0.0905(7)	0.0050(3)
Rwp=17.752%		Fe/Mn	Fe 1/2 Mn 1/2	0.66666	0.33333	0.3507(2)	0.078(3)	0.0000(8)	0.001(1)
а	3.48847(2)	01	1	0.66666	0.33333	0.1192(5)	beq=1.6(1)		
c	8.24724(8)	O2	0.385(7)	0	0	0.322(1)	beq=1.0(2)		
		O3	0.865(7)	0.33333	0.66666	0.408(1)	beq=7.4(5)		
YbMn _{0.75} Fe _{1.25} O _{4.5} , <i>P</i> -3									
2.61% YbMnO ₃ , 2.15% Yb ₂ Fe ₂ O ₇		Yb	1	0	0	0	0	0.0927(6)	0.0008(3)
Rwp=12.971%		Fe/Mn	' Fe 5/8 Mn 3/8	0 66666	0 33333	0 33489(2)	0.076(1)	0.0028(7)	0.001(1)
 a	3.47983(2)	01	1	0.66666	0.33333	0.00+00(2)	beg=3.1(1)		0.001(1)
с	8.28485(6)	02	0.497(7)	0	0.00000	0.3350(6)	beg=0.2(1)		
		O3	0.753(7)	0.33333	0.66666	0.401(6)	beq=0.2(1)		
YbMn _{0.5} Fe _{1.5} O _{4.5} , <i>P-</i> 3									
0.48% Yb ₂ O ₃		Yb	1	0	0	0	0.0073(3)	0.0854(4)	0.007(3)
Rwp=12.788%		Fe/Mn	Fe 3/4 Mn 1/4	0.66666	0.33333	0.3495(2)	0.064(2)	0.0000(8)	0.004(1)
а	3.4833699(8)	O1	1	0.66666	0.33333	0.1167(4)	beq=1.98(8)		
C	8.33177(4)	O2	0.399(5)	0	0	0.3311(8)	beq=0.7(1)		
		O3	0.851(5)	0.33333	0.66666	0.3995(7)	beq=3.7(2)		
YbMn _{0.25} Fe _{1.75} O _{4.5} , <i>P-</i> 3									
0.48% Yb ₂ O ₃		Yb	1	0	0	0	0.0021(4)	0.0016(3)	0.0005(3)
Rwp=18.240%		Fe/Mn	Fe 7/8 Mn 1/8	0.66666	0.33333	0.3512(3)	0.064(2)	0.0000(8)	0.00161(1)
а	3.47099(1)	01	1	0.66666	0.33333	0.1156(6)	beq=2.0(1)		
c	8.35970(6)	O2	0.364(7)	0	0	0.330(1)	beq=1.6(2)		
		O3	0.886(7)	0.33333	0.66666	0.390(1)	beq=3.5(3)		

Table S2. Structural parameters from Rietveld refinement for O phases $YbMn_xFe_{2-x}O_{4.5}$ (x=1, 0.75, 0.5, 0.25).

Material YbMn _x Fe _{2-x} O _{4.5}	Distance (Å)
x=1	2.062(3)
x= 0.75	2.089(6)
x= 0.5	2.095(2)
x=0.25	2.135(4)
*x=0	2.0605

Table S3. Interatomic distances between O2 and O3 in the structure of O phases $YbMn_xFe_{2-x}O_{4.5}$ (x=1, 0.75, 0.5, 0.25,0). *Data for x=0 are from the previous study on $YbFe_2O_{4.5}^{-1}$.

			coefficien		
	atom	modulation wave component	x	t v	7
					-
	Yb	Usin (1)	-0.0074	-0.011	0.026
	Fe	Usin (1)	0.0567	-0.0507	-0.0108
YbMnFeO _{4.5}		Ucos (1)	-0.0147	0.0049	0.0251
super space group: P-1(a,b,g)0	01	Usin (1)	-0.3613	0.0374	-0.0111
k=(0.143, 0.2884, 0.0094)		Ucos (1)	0.1205	0.0555	0.0679
Rwp=12.21%	02	Usin (1)	0.0237	-0.0432	0.0233
		Ucos (1)	-0.0122	-0.0291	0.0063
	03				
	(O _{int})	Usin (1)	-0.0257	0.0107	0.0461
		Ucos (1)	0.0155	-0.0277	0.0055
	Yb		-0.0057	-0.0135	0.0127
	Fe	Usin (1)	0.0252	-0.0104	0.011/
YbMn _{0.75} Fe _{1.25} O _{4.5}			0.0547	-0.0051	0.0523
super space group: $P-1(a,b,g)U$	01	Usin (1)	0.0492	0.0431	0.0181
R = (0.1403, 0.29, 0.0098)	02		-0.1039	-0.0612	-0.0093
<i>Rwp=10.64%</i>	02		0.0003	-0.1851	-0.0143
	03		0.0005	-0.0310	0.0007
	(O _{int})	Usin (1)	0.0552	0.0414	0.0341
		Ucos (1)	0.0341	-0.0277	-0.0221
	Yb	Usin (1)	-0.0208	-0.0009	0.0126
	Fe	Usin (1)	-0.0034	0.0048	0.0091
YbMn _{0.5} Fe _{1.5} O _{4.5}		Ucos (1)	-0.0305	-0.0135	0.0127
<pre>super space group: P-1(a,b,g)0</pre>	01	Usin (1)	-0.1086	0.0115	0.026
k=(0.1501, 0.2902, 0.0101)		Ucos (1)	-0.2138	0.1101	-0.0121
Burn-10 22%	02	llsin(1)	0 1021	0.4005	0.1632
Nwp-10.22%	02	0511(1)	0.1921	-0.4905	0.0824
		Ucos (1)	-0.0237	0.0904	8
	03				
	(O _{int})	Usin (1)	-0.0526	0.0372	-0.0236
		Ucos (1)	0.0561	-0.0603	0.0326
			0.0044	0.0000	0.0000
	<u>YD</u>		-0.0044	-0.0069	0.0238
	Fe		0.0148	-0.019	0.0061
	- 01		-0.0011	0.0027	-0.0042
super space group: P-1(a,D,g)U	01		0.0492	0.0431	-0 0005 0.0181
N-10.1407, 0.2031, 0.0030J Rwn=12 11%	02	$\frac{1}{1}$	-0.1039	-0.0031	-0.0093
ηννμ-12.11/υ	02	$U\cos(1)$	0.0002	-0.1051	0.00145
	03		0.0002	0.0010	0.0007
	(O _{int})	Usin (1)	0.0552	0.0414	-0.0049
		Ucos (1)	0.0341	-0.0221	0.001

Table S4. Modulation parameters of atomic position for O phases $YbMn_xFe_{2-x}O_{4.5}$ (x=1, 0.75, 0.5, 0.25).

Composition	Theoretical oxygen storage capacity (%)	Measured oxygen storage capacity (%) (Step heating/isotherm heating)	Mass used in measurement (mg)	
YbMnFeO ₄	2.300	2.85/2.46	13.27/9.06	
YbMn _{0.75} Fe _{1.25} O ₄	2.299	2.56/2.52	8.93/7.12	
YbMn _{0.5} Fe _{1.5} O ₄	2.297	2.36/2.63	9.21/7.31	
YbMn _{0.25} Fe _{1.75} O ₄	2.296	2.97/2.55	8.63/6.45	

Table S5. Theoretical and measured oxygen storage capacity of $YbMn_xFe_{2-x}O_4$ (x=1, 0.75, 0.5, 0.25).

		atom	occ	x	у	Z	u11=u22	u33
YbMnFeO4 , <i>R-3n</i>	n	Yb	0.93(1)	0	0	0	0.0000(7)	0.037(1)
<i>Rwp</i> = 12.466%		Fe/Mn	0.5	0	0	0.21(1)	0.000(1)	0.00(1)
a	3.4584(4)	01	1	0	0	0.1273(1)	beq = 2.19(6)	
c	25.5924(6)	02	0.92(1)	0	0	0.2932(1)	beq = 0.59(4)	
YbMn _{0.75} Fe _{1.25} O ₄ , <i>R</i> -3 <i>m</i>		Yb	0.98(3)	0	0	0	0.000(1)	0.017(2)
<i>Rwp</i> = 10.9870028%		Fe/Mn	0.875/0.125	0	0	0.2148(4)	0.0312(2)	0.1113(8)
a	3.45869(7)	01	1	0	0	0.1283(2)	beg = 1.5(1)	
c	25.554(1)	02	0.90(2)	0	0	0.2926(3)	beg = 0.3(1)	
YbMn _{0.5} Fe _{1.5} O ₄ , $Rwp = 16.2119116$	R-3m	Yb	0.96(2)	0	0	0	0.000(1)	0.046(3)
	%	Fe/Mn	0.75/0.25	0	0	0.2160(2)	0.010(1)	0.012(3)
a	3.46483(6)	01	1	0	0	0.1276(2)	beg = 2.5(1)	
c	25.3568(9)	02	0.95(2)	0	0	0.2931(2)	beg = 0.9(1)	
YbMn _{0.25} Fe _{1.75} O ₄ , <i>R-3m</i>		Yb	0.96(1)	0	0	0	0.0000(9)	0.035(1)
<i>Rwp</i> = 12.466%		Fe/Mn	0.875/0.125	0	0	0.2155(1)	0.0094(9)	0.008(1)
a	3.46065(3)	01	1	0	0	0.1281(1)	beg = 1.68(7)	
c	25.2575(5)	02	0.97(1)	0	0	0.2929(1)	beg = 0.67(7)	

Table S6: Lattice parameters, atomic coordinates, and displacement parameters of reduced phases at 200 °C from Rietveld fitting of PND data.