[Supplementary Information]

Spider Silk-inspired Peptide Multiblock Hybrid Copolymers for Self-healable Thin Film Materials

Tomoyuki Koga¹,^{*} Tomotaka Morishita¹, Yushi Harumoto¹,

Shin-nosuke Nishimura², Nobuyuki Higashi^{1*}

¹Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, JAPAN

²Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, JAPAN

Corresponding Author

*E-mail: tkoga@mail.doshisha.ac.jp (T. K.)

*E-mail: nhigashi@mail.doshisha.ac.jp (N. H.)

Synthesis of amine-terminated self-assembling oligopeptides

Amine-terminated oligopeptides with different chain lengths and sequences ((Ala)₆, (Ala)₈, (Ala)₁₀, (Gly)₈, (Leu)₈, and (Val)₈) were synthesized *via* SPPS using 9-fluorenylmethoxycarbonyl (Fmoc) chemistry. The oligo(Ala) blocks were first synthesized on a H₂N-(CH₂)₂-NH-Trt-resin using Fmoc-L-Ala-OH, Fmoc-Gly-OH, Fmoc-L-Val-OH, Fmoc-L-Leu-OH, Fmoc- β -Ala-OH, Fmoc-*deg*-COOH (3 equiv), HOBt (3 equiv), and DIPC (3 equiv) in DMF for coupling and piperidine (25%)/DMF for Fmoc removal. Fmoc-*deg*-COOH was introduced at the *C*- and *N*-termini of the peptide as a spacer. To cleave the peptide from the resin, the resin was treated with TFA/TIPS/DCM (10/5/85 [v/v/v]). The resultant amine-terminated oligopeptides were purified *via* a reprecipitation method using diethyl ether and identified *via* ¹H NMR and MALDI-TOF MS analyses (Fig. S1).

H₂N-*deg*-(Ala)_n-*deg*-NH₂

MALDI-TOFMS: n=6; m/z 849.1 [M+H]⁺, 871.1 [M+Na]⁺ (849.0 [M+H]⁺_{Theory}, 871.0 [M+ Na]⁺_{Theory}), n=8; m/z 991.7 [M+H]⁺, 1013.5 [M+Na]⁺ (991.1 [M+H]⁺_{Theory}, 1013.1 [M+Na]⁺_{Theory}), n=10; m/z 1133.3 [M+H]⁺, 1155.2 [M+Na]⁺, 1171.2 [M+K]⁺ (1133.3 [M+H]⁺_{Theory}, 1155.3 [M+ Na]⁺_{Theory}, 1171.4 [M+ K]⁺_{Theory}). ¹H NMR (D₂O, DSS): 1.4 ppm (-CH₃ : side chain of Ala), 2.7 ppm (H₂N-CH₂CH₂-CO-), 3.2-3.3 ppm (-CH₂NH₂), 3.4-3.5 ppm (-NH-CH₂CH₂-O-), 3.6 ppm (-NHCH₂CH₂NH-), 3.65 ppm (-NHCH₂CH₂O-), 3.75 ppm (-OCH₂CH₂O-), 4.1-4.4 ppm (α -CH : main chain of Ala, -OCH₂CO-). H₂N-deg-(Gly)₈-deg-NH₂

MALDI-TOFMS: *m/z* 878.1 [M+H]⁺, 900.1 [M+Na]⁺ (877.9 [M+H]⁺_{Theory}, 899.9 [M+ Na]⁺_{Theory}). ¹H NMR (D₂O, DSS): 2.7 ppm (H₂N-CH₂CH₂-CO-), 3.2-3.3 ppm (-CH₂NH₂), 3.4-3.5 ppm (-NH-CH₂CH₂-O-), 3.6 ppm (-NHCH₂CH₂NH₂), 3.65 ppm (-NHCH₂CH₂O-), 3.7-3.8 ppm (-OCH₂CH₂O-), 4.0-4.3 ppm (-CH₂- : main chain of Gly, -OCH₂CO-).

 H_2N -deg-(Val)₈-deg-NH₂

MALDI-TOFMS: m/z 1237.9 [M+Na]⁺, 1253.9 [M+K]⁺ (1237.8 [M+Na]⁺_{Theory}, 1253.9 [M+K]⁺_{Theory}). ¹H NMR (D₂O/TFA, DSS): 1.0-1.2 ppm (-CH(CH₃)₂ : side chain of Val), 2.2 ppm (-CH(CH₃)₂ : side chain of Val), 2.9 ppm (H₂N-CH₂CH₂-CO-), 3.4-3.6 ppm (-CH₂NH₂, -NH-CH₂CH₂-O-), 3.7-3.8 ppm (-NHCH₂CH₂NH₂, -NHCH₂CH₂O-), 3.9 ppm (-OCH₂CH₂O-), 4.2-4.6 ppm (α -CH : main chain of Val, -OCH₂CO-).

 H_2N -deg-(Leu)₈-deg-NH₂

MALDI-TOFMS: m/z 1350.5 $[M+Na]^+$, 1365.6 $[M+K]^+$ (1349.5 $[M+Na]^+_{Theory}$, 1365.6 $[M+K]^+_{Theory}$). ¹H NMR (D₂O/TFA, DSS): 0.9-1.1 ppm (-CH(CH₃)₂ :side chain of Leu), 1.6-2.0 ppm (-CH₂CH(CH₃)₂, -CH₂CH(CH₃)₂ : side chain of Leu), 2.8 ppm (H₂N-CH₂CH₂-CO-), 3.3-3.5 ppm (-CH₂NH₂), 3.5-3.7 ppm (-NH-CH₂CH₂-O-, -NHCH₂CH₂NH₂), 3.7-3.8 ppm (-NHCH₂CH₂O-), 3.8 ppm (-OCH₂CH₂O-), 4.1-4.4 ppm (α -CH : main chain of Leu, -OCH₂CO-).

Figure S1. MALDI TOF MS spectra of H_2N -*deg*-(Ala)₆-*deg*-NH₂ (a), H_2N -*deg*-(Ala)₈-*deg*-NH₂ (b), H_2N -*deg*-(Ala)₁₀-*deg*-NH₂ (c), H_2N -*deg*-(Gly)₈-*deg*-NH₂ (d), H_2N -*deg*-(Val)₈-*deg*-NH₂ (e), and H_2N -*deg*-(Leu)₈-*deg*-NH₂ (f). Matrix: CHCA.

Figure S2. ¹H-NMR spectra of $[(Ala)_8$ -PPG]_{*m*} (a), $[(Gly)_8$ -PPG]_{*m*} (b), $[(Val)_8$ -PPG]_{*m*} (c), and $[(Leu)_8$ -PPG]_{*m*} (d) in D₂O containing TFA at 20 °C.

Figure S3. Peak deconvolution of FTIR spectrum of [(Ala)₁₀-PPG]_m microfilm (~40 µm thick).

Figure S4. Water contact angles for various multiblock polymer films. (a) $[(Ala)_6-PPG]_m$, (b) $[(Ala)_8-PPG]_m$, (c) $[(Ala)_{10}-PPG]_m$, (d) $[(Val)_8-PPG]_m$, (e) $[(Leu)_8-PPG]_m$, and (f) $[(Gly)_8-PPG]_m$ films.

Figure S5. Thermogravimetric analyses of various [(peptide)_n-PPG]_m films.

Figure S6. Stress vs. $(\lambda - 1/\lambda^2)$ for various [(peptide)₈-PPG]_m microfilms, where slopes indicate shear modulus *G*.

Figure S7. CD spectrum of $[(Ala)_{10}$ -PPG]_{*m*} nanofilm (300 nm thickness) on quartz plate.

Figure S8. (a) Transmission– and (b) reflection absorption–FTIR spectra of $[(Ala)_{10}$ -PPG]_m microfilm (~40 µm thick) on CaF₂ and Au plates, respectively.

Figure S9. Time courses of ion permeation (pTSNa) through [(Ala)₁₀-PPG]_m nanofilm (300 nm thick). Inset shows time course of electrical conductance over a long duration (180 min).

Table S1. Film thickness of [(Ala)_n-PPG]_m-nanofilms estimated *via* AFM and SEM analyses.

	Polymer Concentration			
Polymer		0.5 wt%	1.0 wt%	2.0 wt%
$[(Ala)_6-PPG]_m$	AFM	50 nm	100 nm	290 nm
	SEM	60 nm	110 nm	300 nm
$[(Ala)_8-PPG]_m$	AFM	50 nm	170 nm	300 nm
	SEM	70 nm	150 nm	300 nm
$[(Ala)_{10}$ -PPG] _m	AFM	140 nm	180 nm	290 nm
	SEM	150 nm	200 nm	300 nm