## Supporting Information for: Influence of pH-Neutral Lithium Polystyrenesulfonate Polyelectrolyte on the Energy Band Structure and Performance of Organic Solar Cells

Merve Nur Ekmekci,<sup>a</sup> Ju Hwan Kang,<sup>a</sup> Yeasin Khan,<sup>a,b</sup> Jung Hwa Seo<sup>a,\*</sup> and Bright Walker<sup>b,\*</sup>

<sup>a</sup>Department of Semiconductors and Chemical Engineering (BK21 FOUR), Dong-A University, Busan, 49315, Republic of Korea

<sup>b</sup>Department of Chemistry, Kyung Hee University, Seoul, 02453, Republic of Korea

seojh@dau.ac.kr and walker@khu.ac.kr

## **Contents:**

| <b>Figure S1.</b> Photograph of pH paper results and stability of PTB7 films in acidic environments.                                               | p. 2        |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| <b>Table S1.</b> Composition of hole transport layers used for PSCs and pHvalues of Li:PSS and PEDOT:PSS doped films.                              | p. 3.       |
| <b>Figure S2-S3.</b> Current density vs. voltage curves of all devices measured under simulated AM1.5G solar light and under dark and EQE spectra. | p. 4-5.     |
| <b>Table S2.</b> All device parameters of OSCs based on differentconcentrations of Li:PSS solutions.                                               | р. б.       |
| <b>Figure S4.</b> Topographic AFM images (size: $5 \mu m \times 5 \mu m$ ) of the samples.                                                         | p. 7.       |
| <b>Figure S5.</b> Topographic AFM images (size: 2 µm x 2 µm) of the samples.                                                                       | p. 8.       |
| <b>Figure S6.</b> XPS and UPS spectra of PEDOT:PSS, Li:PSS 0, Li:PSS A10 an Li:PSS M30 deposited on the top of ITO.                                | 1d<br>p. 9. |
| <b>Figure S7.</b> pH and WF with different concentrations of Li:PSS and PEDOT:PSS.                                                                 | p. 10.      |
| Figure S8. The UV-Vis absorbance spectrum.                                                                                                         | p. 11.      |



**Figure S1**. PTB7 Stability in acid. (a) Photograph of pH paper tests for each HTL solution used in the study. (b) Representative absorption spectra of PTB7 films over time during immersion in a 0.1 wt % (5.4 mM) solution of polystyrene sulfonic acid (H:PSS). (c) Absorption at 705 nm of a PTB7 film immersed in a 0.1 wt % (5.4 mM) solution of polystyrene sulfonic acid (H:PSS). (d) Comparison of absorbance at 705 nm vs. time for PTB7 films immersed in 2M HCl solution, 0.1 wt % H:PSS solution, 0.1 wt % Li:PSS solution, and dry PTB7 films in air. (e) Comparison of absorbance at 705 nm vs. time for PTB7 films deposited on ITO, ITO/PEDOT:PSS, ITO/H:PSS and ITO/Li:PSS substrates and exposed to ambient air.

| Hole Transport Layer   | Thickness (nm) | Volume of PEDOT:PSS Soln. <sup>a</sup>   | $pH^b$ |
|------------------------|----------------|------------------------------------------|--------|
|                        |                |                                          |        |
| Li:PSS 0               | 1.62           | 0 µL                                     | 6.36   |
|                        | 2.00           | 0 µL                                     | 6.36   |
|                        | 2.27           | 0 µL                                     | 6.36   |
|                        | 2.54           | 0 μL                                     | 6.36   |
| Li:PSS A1              | 2              | 10 µL                                    | 4.13   |
| Li:PSS A4              | 4              | 40 µL                                    | 3.08   |
| Li:PSS A7              | 6.3            | 70 µL                                    | 2.71   |
| Li:PSS A10             | 7.3            | 100 μL                                   | 2.59   |
| Li:PSS A13             | 8              | 130 µL                                   | 2.52   |
| Li:PSS A16             | 9              | 160 μL                                   | 2.39   |
|                        |                | Ratio (Li:PSS) /(PEDOT:PSS) <sup>d</sup> |        |
| Li:PSS M10             | 20.41          | 90 /10                                   | 2.53   |
| Li:PSS M30             | 40.36          | 70 / 30                                  | 1.94   |
| Li:PSS M50             | 43.06          | 50 / 50                                  | 1.68   |
| Li:PSS M70             | 44             | 30 / 70                                  | 1.50   |
| PEDOT:PSS <sup>e</sup> | 43             | 0 / 100                                  | 1.21   |

**Table S1**. Composition of hole transport layers used for PSCs and pH values of Li:PSS and PEDOT:PSS doped films.

a) Volume of commercial PEDOT:PSS solution added to dilute (0.005 wt%) soln of 1 ml Li:PSS in H<sub>2</sub>O.

b) SI Analytics / Lab 850.

c) Dilute (0.005 wt%) soln. of Li:PSS in H<sub>2</sub>O.

d) Volume ratio of dilute Li:PSS soln to commercial PEDOT:PSS soln.

e) Commercial PEDOT:PSS solution.



Figure S2. Current density vs. voltage curves of PTB7:PC<sub>71</sub>BM solar cells measured (a) under simulated AM1.5G solar light and (b) in the dark.



Figure S3. EQE spectra for devices with different HTL formulations.

| HTL        | J <sub>SC</sub><br>(mA/cm <sup>2</sup> ) | Spectral J <sub>SC</sub><br>(mA/cm <sup>2</sup> ) | V <sub>OC</sub> (V) | FF<br>(%)        | PCE (%)         |
|------------|------------------------------------------|---------------------------------------------------|---------------------|------------------|-----------------|
| No HTL     | $15.32 \pm 1.26$                         | 12.57                                             | $0.67\pm0.02$       | 47.76±4.72       | $4.92\pm0.85$   |
| 1.62 nm    | $16.84\pm0.62$                           | 13.67                                             | $0.63\pm0.05$       | $55.63 \pm 1.73$ | $5.93\pm0.55$   |
| 2.00 nm    | $16.71\pm0.80$                           | 13.39                                             | $0.63\pm0.04$       | $52.07 \pm 4.69$ | $5.53\pm0.68$   |
| 2.27 nm    | $16.03 \pm 1.19$                         | 13.53                                             | $0.62\pm0.09$       | $48.12\pm5.56$   | $4.89 \pm 1.23$ |
| 2.54 nm    | $13.91\pm2.70$                           | 11.32                                             | $0.57\pm0.18$       | $39.85\pm8.75$   | $3.47 \pm 1.74$ |
| Li:PSS A1  | $16.30\pm0.68$                           | 16.50                                             | $0.66\pm0.06$       | $59.77 \pm 5.33$ | $6.48 \pm 1.12$ |
| Li:PSS A4  | $16.82\pm0.74$                           | 17.35                                             | $0.67\pm0.04$       | $57.55 \pm 5.55$ | $6.58 \pm 1.00$ |
| Li:PSS A7  | $16.83\pm0.78$                           | 17.46                                             | $0.73\pm0.03$       | $62.85 \pm 4.91$ | $7.73\pm0.84$   |
| Li:PSS A10 | $17.17\pm0.76$                           | 17.72                                             | $0.74\pm0.01$       | $65.17 \pm 2.27$ | $8.32\pm0.44$   |
| Li:PSS A13 | $17.00\pm0.96$                           | 17.56                                             | $0.74\pm0.01$       | $63.30\pm2.93$   | $7.98 \pm 0.73$ |
| Li:PSS A16 | $16.97\pm0.93$                           | 16.58                                             | $0.74\pm0.01$       | $65.33 \pm 2.19$ | $8.23\pm0.56$   |
| Li:PSS M10 | $17.15\pm0.66$                           | 17.16                                             | $0.73\pm0.01$       | $64.41 \pm 3.89$ | $8.17\pm0.72$   |
| Li:PSS M30 | $17.17\pm0.82$                           | 17.87                                             | $0.73\pm0.01$       | $65.60 \pm 2.27$ | $8.33\pm0.53$   |
| Li:PSS M50 | $17.12\pm0.86$                           | 17.20                                             | $0.73\pm0.01$       | $64.20\pm4.25$   | $8.10\pm0.79$   |
| Li:PSS M70 | $16.81 \pm 1.24$                         | 17.64                                             | $0.73\pm0.01$       | $63.20\pm6.58$   | $7.82 \pm 1.17$ |
| PEDOT:PSS  | $16.99\pm0.76$                           | 14.47                                             | $0.73\pm0.02$       | $64.51\pm2.85$   | $8.09\pm0.61$   |

**Table S2.** Summary of device parameters for OSCs using different HTL formulations compared toreference devices with no HTL and pure PEDOT:PSS.



**Figure S4.** Surface topographic AFM images of (a) ITO, (b) ITO/PEDOT:PSS, (c) ITO/Li:PSS 0, (d) ITO/Li:PSS A4, (e) ITO/Li:PSS A7, (f) ITO/Li:PSS A10, (g) ITO/Li:PSS A13, (h) ITO/Li:PSS A16, (i) ITO/Li:PSS M50, (j) ITO/Li:PSS M30 and (k) ITO/Li:PSS M10 films (size: 5 μm x 5 μm).



**Figure S5.** Surface topographic AFM images of (a) ITO, (b) ITO/PEDOT:PSS, (c) ITO/Li:PSS 0, (d) ITO/Li:PSS A4, (e) ITO/Li:PSS A7, (f) ITO/Li:PSS A10, (g) ITO/Li:PSS A13, (h) ITO/Li:PSS A16, (i) ITO/Li:PSS M50, (j) ITO/Li:PSS M30 and (k) ITO/Li:PSS M10 films (size: 2 μm x 2 μm).



**Figure S6.** XPS spectra in the C 1s region of (a) Li:PSS 0, (b) Li:PSS A10 and (c) Li:PSS M30 deposited on top of ITO.



**Figure S7.** UPS showing the secondary edge (left) and XPS showing S 2p peaks of PEDOT:PSS, Li:PSS 0, Li:PSS A10 and Li:PSS M30 deposited on ITO substrates.



Figure S8. UV-Vis absorbance (a) and transmittance (b) spectra of representative HTLs used in this work.