SUPPLEMENTARY MATERIAL

Tuneable polarity and enhanced piezoelectric response of ZnO thin films grown by metal-organic chemical vapour deposition through the flow rate adjustment

Quang Chieu Bui^{a,b,c} Gustavo Ardila,^b Hervé Roussel,^a Carmen Jiménez,^a Isabelle Gélard,^a Odette

Chaix-Pluchery,^a Xavier Mescot,^b Sarah Boubenia,^c Bassem Salem,^c and Vincent Consonni.^{a*}

^a Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France.

^b Université Grenoble Alpes, CNRS, Grenoble INP, IMEP-LAHC, F-38000 Grenoble, France.

^c Université Grenoble Alpes, CNRS, LTM, F-38054 Grenoble Cedex, France.

*Corresponding author: vincent.consonni@grenoble-inp.fr

Fig. S1 TLM pattern using Au contacts on the surface of ZnO thin films.

Fig. S2 (a) E_2^{low} and (b) E_2^{high} mode-related Raman line positions and intensities of the ZnO thin film grown with the 100 sccm O₂ gas and 0.5 g/min DEZn solution flow rates. The lines were fitted using a Lorentzian function in Origin 2018b software.

Fig. S3 002 diffraction peak position and FWHM of the ZnO thin film grown with the 100 sccm O_2 gas and 0.5 g/min DEZn solution flow rates. The peak was fitted using a Pseudo-Voigt function in Origin 2018b software.

Fig. S4 Williamson-Hall plots of ZnO thin films as a function of the (a) O_2 gas and (b) DEZn solution flow rates.

Fig. S5 (a-g) Raw amplitude and (h-n) phase histograms of ZnO thin films deduced from PFM measurements.