Supplementry Information

Anharmonicity Induced Faster Decay of Hot Phonons in Rutile TiO₂ Nanorods: A Raman Spectromicroscopic study

Chanchal Rani¹, Devesh K. Pathak¹, Manushree Tanwar¹, Suchita Kandpal¹, Tanushree Ghosh¹, Maxim Yu. Maximov², Rajesh Kumar^{1,3, 4*}

¹Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol- 453552, India

² Peter the Great Saint-Petersburg Polytechnic University, 1952521, Saint Petersburg, Russia.

³Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol- 453552, India.

⁴ Centre for Indian Scientific Knowledge Systems, Indian Institute of Technology Indore,

Simrol-453552, India.

^{*} Email: rajeshkumar@iiti.ac.in

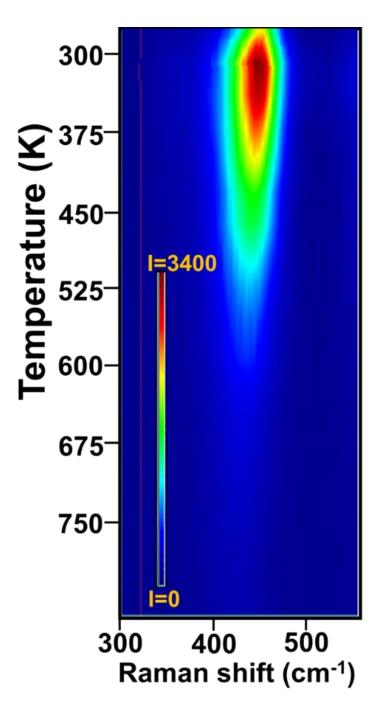


Figure S1: Zoomed version of thermal Raman map (Figure 3, main text) of E_g Raman mode of rutile TiO₂ nanorods.

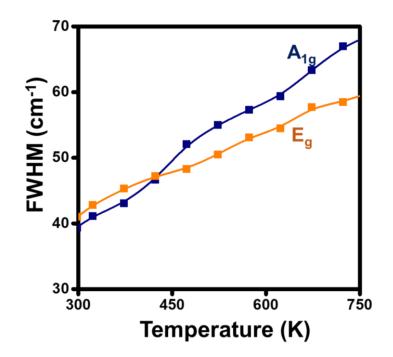


Figure S2: FWHM vs. Temperature from the range room temperature (300K) to High temperature (750K) for both Raman modes (E_g and A_{1g}) of rutile TNRs.

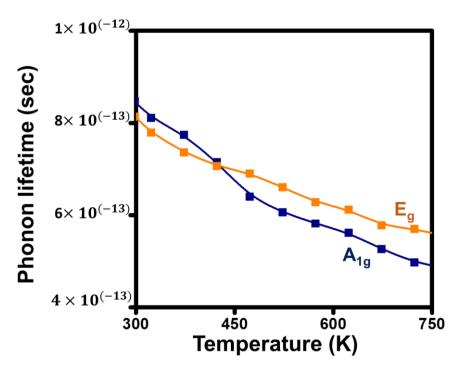


Figure S3: Phonon lifetime vs. Temperature from the range room temperature (300K) to High temperature (750K) for both Raman modes (E_g and A_{1g}) of rutile TNRs.