Supporting Information

Tuning crystal structure and luminescence of Eu²⁺-activated LiSr_{1-x}Ba_xPO₄ solid solution for white light-emitting diodes

Shuzhen Liao,^a Yao Zhang,^a Ying Li,^b Jilin Zhang^{b,*} Zhen Chen,^a Bing Yi^{a,*}

^a Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.

^b Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China.

Corresponding Author

* bingyi2004@126.com (B Yi),

* chemzhangjl@hunnu.edu.cn (J Zhang).

Figure S1. Rietveld refinement of LiSr_{0.995-x}Ba_xPO₄:0.005Eu²⁺ synthesized at 1200 °C. (a) x = 0.1, (b) x = 0.5, (c) x = 0.9.

	x = 0	x = 0	0.1	0.3	0.5	0.7	0.9	0.995
	(1100 °C)	(1200 °C)						
Crystal		monoclinic						
S. G.*				C1c1				P31c
a/Å	5.1829(1)	5.1839(1)	5.1886(1)	5.1932(1)	5.1918(1)	5.2052(1)	5.2209(1)	5.1298(1)
b/Å	8.2776(1)	8.2788(2)	8.3219(1)	8.4411(1)	8.5644(2)	8.6319(2)	8.6895(1)	
c/Å	8.2233(1)	8.2212(2)	8.2617(1)	8.3444(1)	8.4272(2)	8.5063(1)	8.5912(1)	8.6644(1)
$V/\text{\AA}^3$	352.77(1)	352.82(1)	356.73(1)	365.78(1)	374.71(1)	382.20(1)	389.75(1)	197.46(1)
$\beta / ^{\circ}$	90.36	90.35	90.34	90.18	89.97	90.04	89.89	90
Ζ	4	4	4	4	4	4	4	2
$R_{ m wp}$	9.97%	15.49%	9.60%	10.01%	13.29%	12.63%	9.02%	12.78%
R _p	6.26%	9.93%	6.36%	6.85%	9.21%	8.89%	6.23%	9.20%
χ^2	3.043	8.435**	2.792	2.416	3.606	2.687	1.377	2.411

Table S1. Refinement Results and cell parameters for LiSr0.995-xBaxPO4:0.005Eu²⁺

*space group,

**There is an obvious impurity for x = 0 (1200 °C) as indicated in our previous work.¹ Therefore, a higher χ^2 value is obtained.

[1] Liao, S.; Li, Y.; Zhang, Y.; Tan, Z.; Fu, X.; Qiu, Z.; Zhang, J., Highly thermal stable phosphor LiSrPO4:Eu²⁺ with a new crystal structure. *Applied Materials Today* **2020**, *21*, 100792.

Table S2. Atomic parameters of LiSr0.995PO4:0.005Eu²⁺

Atom	Wyckoff	S.O.F.	x/a	<i>y/b</i>	<i>z/c</i>	$U_{\rm iso}/[{\rm \AA}^2]$
Sr	4a	0.995	0.13458	0.00771	-0.15128	0.0074
Eu	4a	0.005	0.13458	0.00771	-0.15128	0.0074
Р	4a	1	0.13192	0.31069	0.57779	0.0035
01	4a	1	-0.16482	0.20133	0.21813	0.0137
02	4a	1	-0.03622	0.15405	0.58223	0.0101
03	4a	1	0.45663	-0.04824	0.60296	0.0064
O4	4a	1	-0.25397	0.80594	0.40881	0.0096
Li	4a	1	0.08191	0.38585	0.15789	0.0137

Atom	Wyckoff	S.O.F.	x/a	<i>y/b</i>	z/c	$U_{ m iso}/[{ m \AA}^2]$
Sr	4a	0.895	0.09480	0.00792	-0.24102	0.0121
Ba	4a	0.1	0.09480	0.00792	-0.24102	0.0121
Eu	4a	0.005	0.09480	0.00792	-0.24102	0.0121
Р	4a	1	0.07929	0.31176	0.49035	0.0064
01	4a	1	-0.20720	0.19576	0.12438	0.0125
O2	4a	1	-0.07595	0.15720	0.49669	0.0099
03	4a	1	0.40921	-0.04505	0.51336	0.0006
O4	4a	1	-0.29438	0.81797	0.31876	0.0007
Li	4a	1	0.07424	0.37463	0.07013	0.0051

Table S3. Atomic parameters of $LiSr_{0.895}Ba_{0.1}PO_4:0.005Eu^{2+}$

Table S4. Atomic parameters of $LiSr_{0.695}Ba_{0.3}PO_4{:}0.005Eu^{2+}$

Atom	Wyckoff	S.O.F.	x/a	y/b	z/c	$U_{ m iso}/[{ m \AA}^2]$
Sr	4a	0.695	0.09237	-0.00782	-0.24764	0.0150
Ba	4a	0.3	0.09237	-0.00782	-0.24764	0.0150
Eu	4a	0.005	0.09237	-0.00782	-0.24764	0.0150
Р	4a	1	0.09232	0.31989	0.53027	0.0055
01	4a	1	-0.32309	0.18887	0.19764	0.0801
O2	4a	1	-0.07909	0.16672	0.50640	0.0121
03	4a	1	0.41628	-0.05247	0.50193	0.0211
O4	4a	1	-0.16883	0.80265	0.39912	0.0435
Li	4a	1	-0.04435	0.38244	-0.05344	0.0231

Atom	Wyckoff	S.O.F.	x/a	y/b	z/c	$U_{ m iso}/[{ m \AA}^2]$
Sr	4a	0.495	0.08980	-0.00688	-0.26275	0.0153
Ba	4a	0.5	0.08980	-0.00688	-0.26275	0.0153
Eu	4a	0.005	0.08980	-0.00688	-0.26275	0.0153
Р	4a	1	0.08405	0.32096	0.51916	0.0115
01	4a	1	-0.32367	0.18068	0.19251	0.0241
O2	4a	1	-0.07443	0.17345	0.47942	0.0057
03	4a	1	0.41733	-0.03951	0.50373	0.0112
O4	4a	1	-0.17200	0.81878	0.40850	0.0169
Li	4a	1	0.14386	0.36480	-0.08656	0.0192

Table S5. Atomic parameters of LiSr_{0.495}Ba_{0.5}PO₄:0.005Eu²⁺

Table S6. Atomic parameters of $LiSr_{0.295}Ba_{0.7}PO_4{:}0.005Eu^{2+}$

Atom	Wyckoff	S.O.F.	<i>x/a</i>	<i>y/b</i>	z/c	$U_{ m iso}/[{ m \AA}^2]$
Sr	4a	0.295	0.07613	-0.00784	-0.26701	0.0127
Ba	4a	0.7	0.07613	-0.00784	-0.26701	0.0127
Eu	4a	0.005	0.07613	-0.00784	-0.26701	0.0127
Р	4a	1	0.07988	0.32443	0.51390	0.0114
01	4a	1	-0.34975	0.17413	0.18824	0.0129
O2	4a	1	-0.08824	0.17795	0.47031	0.0035
03	4a	1	0.41594	-0.03907	0.48423	0.0109
O4	4a	1	-0.18197	0.82123	0.41150	0.0205
Li	4a	1	0.13918	0.35731	-0.09318	0.0039

Atom	Wyckoff	S.O.F.	x/a	y/b	z/c	$U_{ m iso}/[{ m \AA}^2]$
Sr	4a	0.095	0.06931	-0.00730	-0.26705	0.0110
Ba	4a	0.9	0.06931	-0.00730	-0.26705	0.0110
Eu	4a	0.005	0.06931	-0.00730	-0.26705	0.0110
Р	4a	1	0.08207	0.32917	0.52208	0.0028
01	4a	1	-0.37681	0.17653	0.20869	0.0623
O2	4a	1	-0.10093	0.17072	0.50041	0.0269
03	4a	1	0.40921	-0.03654	0.47981	0.0069
O4	4a	1	-0.18998	0.82392	0.51741	0.0257
Li	4a	1	0.03941	0.35087	-0.09316	0.0569

Table S7. Atomic parameters of $LiSr_{0.095}Ba_{0.9}PO_4$:0.005Eu²⁺

Table S8. Atomic parameters of $LiBa_{0.995}PO_4$:0.005Eu²⁺

Atom	Wyckoff	S.O.F.	x/a	<i>y/b</i>	z/c	$U_{ m iso}/[{ m \AA}^2]$
Ba	2a	0.995	0	0	0.02922	0.0089
Eu	2a	0.005	0	0	0.02922	0.0089
Р	2b	1	2/3	1/3	0.82194	0.0027
01	2b	1	2/3	1/3	0.99106	0.0415
O2	бс	1	0.38980	0.05364	0.76357	0.0068
Li	2b	1	2/3	1/3	0.18632	0.3027

sample (<i>x</i>)	Sr/Ba/Eu-O	d (Å)	P-O	<i>d</i> (Å)
LiSr _{0.995} PO ₄ :0.005Eu ²⁺ ,	01	2.5566	01	1.5609
(x=0)	01	2.8373	O2	1.5631
	O2	2.6510	O3	1.4949
	O2	2.5067	O4	1.5138
	O3	2.6693		
	O3	2.6881		
	O4	2.5872		
	O4	2.7050		
	O4	3.5570		
LiSr _{0.695} Ba _{0.3} PO ₄ :0.005Eu ²⁺ ,	01	2.6820	01	1.4645
(x = 0.3)	01	2.7660	O2	1.5820
	01	3.4304	O3	1.4322
	O2	2.6766	O4	1.6632
	O2	2.6641		
	O3	2.7130		
	O3	2.7209		
	O4	2.5198		
	O4	3.0367		
LiSr0.295Ba0.7PO4:0.005Eu ²⁺ ,	01	2.6681	01	1.5273
(x = 0.7)	01	2.9311	O2	1.5817
	01	3.3373	O3	1.4764
	O2	2.8800	O4	1.5158
	O2	2.6392		
	O3	2.7719		
	O3	2.8026		
	O4	3.3476		
	O4	2.5900		
LiBa _{0.995} PO ₄ :0.005Eu ²⁺ ,	O2	2.9702	01	1.4654
(x = 0.995)	O2	2.9702	O2	1.5145
	O2	2.9702	O2	1.5143
	01	2.9798	O2	1.5148
	O1	2.9803		
	O1	2.9803		
	O2	2.7653		
	O2	2.7653		
	O2	2.7653		

Table S9. Sr/Ba/Eu-O and P-O distances (*d*) of selected samples from the refinement results.

Figure S2. Comparison among PL spectra of LiSr_{0.995-x}Ba_xPO₄:0.005Eu²⁺ obtained at (a) 1000, (b) 1100, (c) 1200, and (d) 1300 °C.

Figure S3. XRD patterns of LiSr_{0.995-x}Ba_xPO4:0.005Eu²⁺ obtained at (a) 1000, (b) 1100, (c) 1300 °C.

Figure S4. Spectra for the measurement of quantum efficiency.

Figure S5. CIE coordinate values versus driving current.