S1: XRD crystallisation data obtained for GVL only and GVL-10MeOH systems drop cast onto annealed stacks and annealed at 45-50°C in-situ. Samples were maintained for 15 minutes at 25°C prior to heat onset to accurately imitate the standard device infiltration procedure. Heat onset, removal and cooling are highlighted on each graph by green, red and black lines respectively.
S 2: FTIR traces of MAPbI$_3$ crystallised in ZrO$_2$ scaffolds from GVL only and GVL-10MeOH based precursors.

S 3: PV device parameters from devices made using MAPbI$_3$ precursors in GVL with 0, 5, 10 and 15% MeOH. Four devices in each set.
S 4: Cross-sectional SEM images of devices produced using GVL and GVL-MeOH precursors. 10% samples show two types of mesoporous infiltration, with some particularly densely filled areas of the TiO\textsubscript{2}/ZrO\textsubscript{2} observed.

S 5: Cross-sectional SEM images of the TiO\textsubscript{2} and ZrO\textsubscript{2} layers in a GVL only GVL-10MeOH device. This section of the GVL-10MeOH device exhibits particularly dense ZrO\textsubscript{2} and TiO\textsubscript{2} infiltration.
S 6: Normalised PV parameters of two GVL only and three GVL-10MeOH devices over 430 hours of stability testing. The unencapsulated devices were tested every four hours and held at V_{oc} under AM1.5 at 50°C in ambient conditions for the duration. The red bracket highlights extrapolated data between hours 12 and 136, where a software glitch prevented data collection for GVL 1 and 2 and GVL-10MeOH 1 and 2. Red dashes highlight device T80 lifetimes.
S 7: Normalised performance of devices fabricated from the same GVL only or GVL-10MeOH precursor and printing batch over a period of 24 days. 5-6 devices for each precursor on each day.