Tuning ionic conductivity to enable all-climate solid-state Li-S batteries with superior performances

Chaochao Wei^{1,2}, Chuang Yu^{1,*}, Linfeng Peng¹, Zhongkai Wu¹, Ziqi Zhang³, Ruonan Xu³, Cong Liao¹, Wei Zhang¹, Long Zhang³, Shijie Cheng¹, Jia Xie^{1,*}

¹ State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

² School of Chemistry and chemical engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

³Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

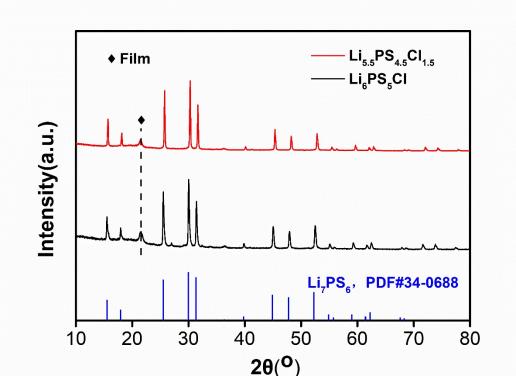


Fig. S1 XRD patterns of Li_{5.5}PS_{4.5}Cl_{1.5} and Li₆PS₅Cl solid state electrolyte.

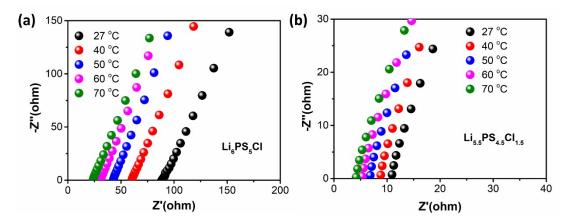


Fig. S2 Complex impedance spectra of (a) Li_6PS_5Cl and (b) $Li_{5.5}PS_{4.5}Cl_{1.5}$ solid electrolytes at different temperatures.

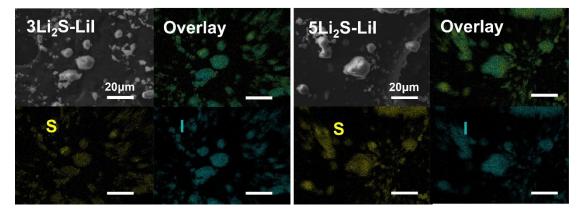


Fig. S3 SEM images and EDX elemental mapping of 3Li₂S-LiI and 5Li₂S-LiI.

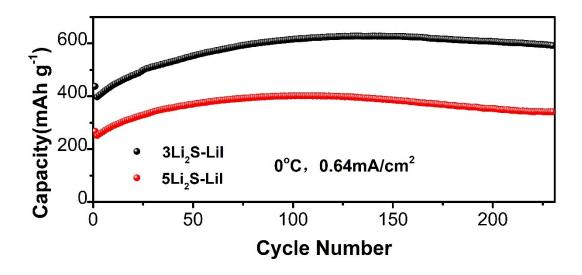


Fig. S4 Cycling performances of Li_{5.5}PS_{4.5}Cl_{1.5}-based solid-state Li-S batteries using

 $3Li_2S$ -LiI and $5Li_2S$ -LiI cathode mixture cycled at 0°C, 0.64mA/cm² (The mass of the cathode mixture is 2 mg).