Green synthesis of CuO/rGO nanocomposites using Terminalia Arjuna bark extract and its expected catalytic behavior towards purification of water

Vanita Kumari, Sandeep Kaushal*, Prit Pal Singh*

Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India

Fig. S1. a) UV–visible spectra of CuO, rGO and CuO/rGO nanocomposite; b-d) Tauc plot for CuO, rGO and CuO/rGO nanocomposite

Fig. S2. PL spectra of a) CuO; b) rGO and c) CuO/rGO nanocomposite

Fig. S3. Effect of adsorbent dosage on the percentage adsorption of (a) Bi³⁺ and (b) Cd²⁺ ions on various adsorbent samples of rGO, CuO and CuO/rGO nanocomposites

Fig. S4. Effect of pH on the percentage adsorption of (a) Bi³⁺ and (b) Cd²⁺ ions onto CG-V (0.75:1.00) nanocomposite

Fig. S5. LC-MS indicating principal by-products of photocatalytic degradation of MO

Fig. S6. Probable transformation pathways for photocatalytic degradation of MO

Fig. S7. LC-MS indicating principal by-products of photocatalytic degradation of EBT

Fig. S8. Probable transformation pathways for photocatalytic degradation of EBT

Sample	Langmuir		Freundlich			Temkin			
	$q_{\rm m}$	R ²	R_L	K_{f}	n	R ²	K _T	В	R ²
CG-I (0.00:1.00)	58.8	0.91	0.26	0.47	2.6	0.91	0.00007	0.0006	0.93
CG-II (1.00:0.00)	70.9	0.95	0.27	0.44	2.3	0.95	0.00009	0.0007	0.97
CG-III (0.25:1.00)	52.6	0.86	0.24	0.54	4.5	0.99	0.00005	0.0005	0.99
CG-IV (0.50:1.00)	90.9	0.99	0.26	0.43	2.9	0.99	0.00009	0.0008	0.99
CG-V (0.75:1.00)	138.8	0.99	0.22	0.53	3.5	0.99	0.00008	0.0008	0.99
CG-VI (1.00:1.00)	126.5	0.99	0.21	0.56	4.8	0.99	0.00004	0.0004	0.99

Table S1. Various adsorption models for Bi3+ adsorption on CuO/rGO nanocomposite

Table S2. Various adsorption models for Cd²⁺ adsorption on CuO/rGO nanocomposite

Sample	Langmuir		Freundlich			Temkin			
	q _m	R ²	R _L	K _f	n	R ²	K _T	В	R ²
CG-I (0.00:1.00)	66.6	0.99	0.29	0.30	1.62	0.99	0.00007	0.0005	0.95
CG-II (1.00:0.00)	55.5	0.94	0.26	0.44	2.3	0.94	0.00009	0.0007	0.95
CG-III (0.25:1.00)	83.3	0.98	0.27	0.41	2.1	0.98	0.00001	0.0008	0.99
CG-IV (0.50:1.00)	91.5	0.99	0.27	0.41	2.3	0.99	0.00001	0.0009	0.99
CG-V (0.75:1.00)	112.4	0.99	0.22	0.62	3.0	0.99	0.00008	0.0007	0.99
CG-VI (1.00:1.00)	93.4	0.96	0.21	0.58	4.9	0.96	0.00002	0.0003	0.98

Table S3. Different variables for pseudo first and second order kinetics for EBT dye

Sample	1 st Order Reaction		2 nd Order Re	action	
	K ₁	R ²	K ₂	R ²	
CG-I (0.00:1.00)	0.0041	0.97	3.6x10 ⁴	0.99	
CG-II (1.00:0.00)	0.0039	0.90	3.7x10 ⁴	0.99	
CG-III (0.25:1.00)	0.0096	0.96	3.4x10 ³	0.97	
CG-IV (0.50:1.00)	0.0122	0.98	7.3x10 ³	0.99	
CG-V (0.75:1.00)	0.0126	0.98	1.3x10 ³	0.99	
CG-VI (1.00:1.00)	0.0368	0.99	8.1x10 ³	0.99	

Sample	1 st Order Reaction		2 nd Order Re	eaction	
	K1	\mathbb{R}^2	K ₂	R ²	
CG-I (0.00:1.00)	0.0041	0.98	1.6x10 ⁴	0.99	
CG-II (1.00:0.00)	0.0046	0.98	1.7×10^4	0.99	
CG-III (0.25:1.00)	0.0064	0.97	6.7×10^3	0.99	
CG-IV (0.50:1.00)	0.0082	0.98	7.2×10^3	0.99	
CG-V (0.75:1.00)	0.0126	0.99	1.6x10 ³	0.99	
CG-VI (1.00:1.00)	0.0345	0.99	8.0x10 ³	0.99	

Table S4. Different variables for pseudo first and second order kinetics for MO dye