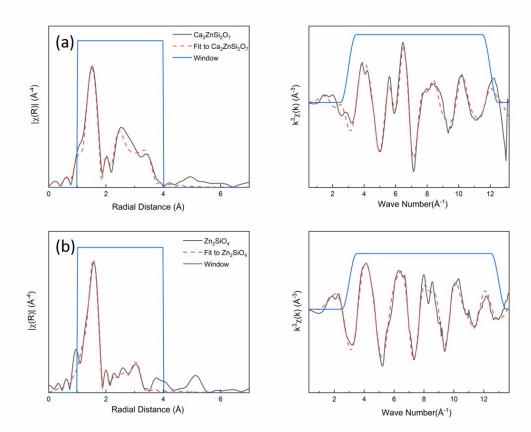

Chemical structure and dissolution behaviour of CaO and ZnO containing alkali-borosilicate glass: Supplementary Material


Adam J. Fisher¹, Hao Ding¹, Prashant Rajbhandari¹, Brant Walkley², Lewis R. Blackburn¹, Martin C. Stennett¹, Russell J. Hand¹, Neil C. Hyatt¹, M. T. Harrison³ and Claire L. Corkhill^{1*}

¹NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK ²Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK ³National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG

*Corresponding author: c.corkhill@sheffield.ac.uk

Supplementary Figure 1. X-ray Diffraction patterns acquired for the pristine Ca_xZn_y lithium alkali-borosilicate glass series.

Supplementary Figure 2. Extended X-ray Absorption Fine Structure (EXAFS) spectrum in radial space and the corresponding k^3 - weighted EXAFS for Zn-containing standards: (a) hardystonite (Ca₂ZnSi₂O₇) and; (b) willemite (Zn₂SiO₄).

Supplementary Table 1. Peak assignments and fitting shapes for ¹¹B MAS NMR spectra used for the Ca_xZn_y glass series.

Coordination	Peak	Chemical shift / ppm	Fitting shape	Comments
^[3] B	(a) ring	16.8 (approx)	Q _{mas} 1/2	Amplitude, width and chemical shift (ppm) were refinable.
	(b) non-ring	14.5 (approx)	Q _{mas} 1/2	
^[4] B	(a) (1B, 3Si)	-1 (approx)	Gaussian	Amplitude, chemical shift (ppm), apodisation of theroretical lineshape, quadrupolar frequency were refinable. Asymmetry parameter (η_Q) was fixed.
	(b) (0B, 4Si)	-2.2 (approx)	Gaussian	

Equations used for ²⁹Si and ¹¹B MAS NMR spectral deconvolution:

$$R_{eff} = \frac{\left[(Na_2 0) + (Li_2 0) + (Ca 0) \right] - \left[(Al_2 0_3) + (Zn 0) \right]}{(B_2 0_3)}$$
(S1)

$$K = \frac{(Si 0_2)}{(B_2 0_3)}$$
(S2)

$$R_{max} = \frac{1}{2} + \frac{1}{16}K$$
(S3)

$$R_{d1} = \frac{1}{2} + \frac{1}{4}K$$
(S4)

$$R_{dl2} = 2 + K \tag{S5}$$

The fraction of ^[4]B was calculated considering the following:

$${}^{[4]}\mathsf{B} = \frac{8+K}{12} \left(1 - \frac{R_{eff}}{2+K} \right) \qquad \text{if} \quad R_{d1} < R_{eff} < R_{d2}, \tag{S6}$$

[4]B =
$$R_{max}$$
 if $R_{max} < R_{eff} < R_{d1}$, (S7)

$$[4]\mathbf{B} = R_{eff} \qquad \text{if} \quad R_{eff} < R_{max.} \tag{S8}$$

The predicted ^[3]B fraction is therefore given in Eqn. S9, and the comparison between the predicted ^[4]B /^[3]B contributions and those measured by ¹¹B MAS NMR is given by Eqn. S10.

$$^{[3]}B = 1 - [^{4]}B$$
 (S9)

$$B_{Accuracy} = \frac{B Measured}{B Predicted}$$
(S10)