
Wallis et al.    ESI 

1 of 11 

 

Electronic Supporting Information  
 

 

Progressive changes in crystallographic textures of biominerals generate functionally 

graded ceramics 

 

David Wallis, Joe Harris, Corinna F. Böhm, Di Wang, Pablo Zavattieri, Patrick Feldner, 

Benoit Merle, Vitaliy Pipich, Katrin Hurle, Lars N. Hansen, Frédéric Marin,  

and Stephan E. Wolf* 

 

Experimental Details 

Electron backscatter diffraction analysis:  Orientation data were processed and plotted using 

Oxford Instruments HKLChannel5 software. Misindexed pixels with > 10° misorientation from each 

of their eight neighbors were removed, and unindexed pixels with at least six neighbors within the 

same prism were filled with the average orientation of their neighbors. Analysis of elastic properties, 

such as Young’s modulus, was performed using the MTEX 4.5 toolbox for MATLAB®, following the 

approach of Mainprice et al. and using the elastic stiffness tensor for calcite of Chen et al.[54,55] This 

approach was preferred over common experimental techniques for quantifying variations in 

heterogeneous mechanical properties over micrometer length-scales, such as nanoindentation,[20] 

which also can measure an effective elastic modulus. However, for highly anisotropic materials such 

as calcite, which exhibits auxeticity,[85] it is not appropriate to use conventional equations based on 

isotropic elasticity to derive Young’s modulus from effective indentation moduli, as they do not 

account for variation in Poisson’s ratio.[20] The method that we employed to predict elastic 

properties is widely used and tested in the geological sciences,[54,86,87] and previous work suggests that 

the organic content of biogenic calcite prisms does not cause its elastic properties to deviate 

significantly from those of geological calcite.[20] 

XRD and Anisotropic Scherrer Analyses:  X-ray diffraction analysis was performed at a D8 

diffractometer (Bruker AXS, Karlsruhe, Germany) equipped with a 9-fold sample changer. Specimens 

were prepared by a front-loading method in quadruplicate. The following measurement parameters 

were applied: range 10–90° 2θ; step size 0.011° 2θ, integration time 0.4 s; radiation: Cu Kα; generator 
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settings: 40 mA, 40 kV; divergence slit: 0.3°. Rietveld refinement was performed by means of the 

software TOPAS V5 (Bruker AXS, Karlsruhe, Germany. For the refinement of calcite, a hkl phase 

with the space group and lattice parameters of the calcite structure ICSD #80869 by Maslen et al.[88] 

was used to obtain an optimum fit. The lattice parameters a and c were refined. For the refinement of 

crystallite (coherent scattering domain) sizes, an anisotropic crystallinity model was applied, in which 

the shapes of the crystallites were simulated by suitable geometric models, following the approach of 

Ectors et al.[76]. A triaxial ellipsoid model was chosen and its dimension was defined by three radii rx, 

ry, and rz. The radius in z-direction, rz, is parallel to the crystallographic [c]-axis of the trigonal calcite 

crystallites, and rx is parallel to the [a]-axis. Due to the crystallographic requirements of the trigonal 

system rx and ry are equal.  

Thermogravimetric analysis:   Prisms were separated by bleaching, which disintegrated the 

interprismatic organics and the periostracum while keeping the mineral prisms intact. The prismatic 

shell layers were cut into small pieces, which were immersed in sodium hypochlorite solution (0.25 g 

of active chlorine/100 ml of water) for three days. After filtration, the prisms were collected by 

filtration and rinsed with water. Samples were powdered and subjected to thermogravimetry analysis 

under nitrogen atmosphere at a heating rate of 5 K min-1 (TA Instruments, TGA Q5000). 

Small and ultra-small angle neutron scattering (SANS, VSANS):  Small-Angle Neutron 

Scattering (SANS) experiments were performed on KWS-2 and KWS-3 instruments operated by 

Jülich Centre for Neutron Science (JCNS) at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, 

Germany.[89,90] With the focusing SANS instrument KWS-3, scattering vectors Q from 0.0001 to 0.35 

Å-1 are accessible, at sample-to-detector distances of 9.2, 1.25, 0.25 and 0.05 m. This resolution was 

reached by a toroidal mirror with focus-to-focus distance 22 m, entrance aperture 2x2 mm2, 

wavelength λ = 12.8 Å (Δλ/λ = 17), and two-dimensional position-sensitive scintillation detector with 

diameter 9 cm and pixel size 0.32 mm. To improve scattering statistics above Q = 0.02 Å-1 

experiments were also carried out at the classical pinhole SANS instrument KWS-2 at sample-to-
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detector distances of 2 and 8 m (corresponding collimation length of 4 and 8 m), and wavelength of λ 

= 5 Å (Δλ/λ = 10%). Within the configurations mentioned above, KWS-2 covers a Q-range from 0.01 

to 0.45 Å-1. Powders of separated prisms were placed into a demountable quartz cell with a path length 

of 0.1 mm. The data reduction, analysis, background subtraction and fitting were performed using the 

software QtiKWS (V. Pipich, 2019, http://www.qtikws.de). A multi-level Beaucage fit was applied.[79]  

Mechanical Testing:   To determine hardness and fracture toughness of the prisms, nano- 

and microindentation studies were performed on transverse cross-sections of the prismatic layer. Prior 

to indentation the sections were polished using a Multiprep lapping unit (Allied technologies) with 

0.5 µm diamond lapping films. The nanoindentation experiments were performed using a nanoindenter 

XP (Keysight Technologies Inc., USA) and a Berkovich diamond tip with a maximum penetration 

depth of 200 nm. The continuous stiffness measurement (CSM) technique, with a frequency of 45 Hz 

and a harmonic displacement amplitude of 2 nm, was applied to characterize the evolution of the 

hardness and effective elastic modulus as a function of penetration depth.[91–93] The measurements 

were started after reaching a stable thermal drift-rate less than 0.05 nm/s. To further account for 

thermal drift effects, the force was held constant at the end of the unloading step at 10 % of maximum 

load for 60 s and the displacement data were corrected based on the measured drift rate. Crack-

initiation studies were undertaken on at least 12 stiff and 12 compliant prisms. Nanoindentation 

measurements were performed in a load-controlled manner up to a maximum force of 15 mN using a 

diamond Berkovich indenter tip. Pop-ins caused by crack initiation were defined as a burst in the load-

displacement curve of greater than 3 nm based on analysis of indents from tests with and without pop-

in events. After indentation, samples were investigated with a Dimension 3100 atomic force 

microscope (Bruker Corporation, USA) operating in contact mode. Standard silicon nitride contact tips 

were used with a nominal tip radius of 20 nm. Image acquisition was performed at a scan-rate of 0.5 

Hz and a resolution of 512x512 pixels. 

Vickers micro-indentation studies were performed on transverse cross-sections of 

P. margaritifera and P. nobilis, and geological calcite prepared using the same protocol as for 

http://www.qtikws.de/
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nanoindentation studies. Geological calcite single crystals were indented parallel to the [c]-axis. The 

crystallographic orientation of the prepared geological calcite sample surface was assessed using 

EBSD. Samples were indented using a Zwick 3212 indenter (Zwick GmbH, Ulm, Germany) with 1 kg 

loading with 10 seconds loading time. Samples were subsequently sputter coated with gold and 

imaged with secondary electrons in a scanning electron microscope. For fracture toughness 

determination from Vickers indents, cracks were classified as Palmqvist-cracks. Fracture toughness 

was then determined using Equation 1 (given below), under the assumption that the cracks are 

approximately elliptical, and that horizontal crack length is therefore also a proxy for vertical crack 

depth. 
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Finite-Element Modelling:  To predict the effect of the gradient in Young’s Modulus within the 

prismatic layer of P. margaritifera on the toughness of the material, we constructed finite-element 

models (FEMs) of a long strip of material with a pre-existing crack loaded in Mode I (Figure S5A–B). 

This particular condition mimics the condition induced by the indenter when the crack tip is 

sufficiently far away from the indenter. We modelled four distributions of Young’s Modulus indicated 

in Figure S5C: the graded distribution based on the EBSD-derived distribution in P. margaritifera (red 

line), the inverse graded distribution (blue line), a discrete layered distribution (green line), and a 

homogeneous distribution (black line). The finite-element computational domain is shown in Figure 

S5D. The length and width of the domain were 4.8 mm and 0.6 mm, respectively. For the layered 

material, the domain was divided into 6 regions of width 𝑤0 = 0.1 mm with constant Young’s 

modulus. The values of Young’s modulus were 79.4 GPa, 91.0 GPa, 92.8 GPa, 88.3 GPa, 86.5 GPa, 

and 86.4 GPa. For each case, we considered finite-element meshes with seven crack sizes, a = 1 µm, 

12 µm, 25 µm, 38 µm, 50 µm, 75 µm, 100 µm, 125 µm, and 150 µm. The FEM analysis was 

performed in the software package Abaqus and we employed 2D plane strain elements (i.e., element 

CPE4R). We applied a uniform displacement at the top boundary and symmetry boundary conditions 

at the bottom of the mesh. The mesh was refined at the crack tip, as displayed in Figure S5D. The 
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mesh size around the crack tip was determined by a preliminary convergence study on the values of 

the J-integral with three different mesh sizes, presented in Figure S5H.  Thereby, the element size near 

the crack tip was determined to be small enough to provide an accurate stress field. To determine the 

stress intensity factor variation at the crack tip for the various cases, we employed a “modified” J-

integral because the conventional J-integral method (also implemented and available in Abaqus) could 

be path-dependent for the heterogeneous case. Conversely, the modified J-integral is independent of 

the contour path that is chosen. Based on previous works,[94–99] we adopt the following J-Integral:  

                                 ,1 1, 1,1 ,1 1
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where, 𝑤𝑝 are the weights of integration, det() is the determinant of Jacobian matrix, W is the strain 

energy density, 𝑢𝑖,1 is the derivative in the x-direction of the displacements,  𝑞1 is a continuous 

function with value zero on the outer contour and value one on all the other contours except the outer 

path.[94–99] N is the number of integration points, 𝐴 is the area of integration contour, and 𝜎𝑖𝑗 is the 

components of the Cauchy stress tensor. We note also that 𝑊,1 =
𝑑𝑊
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, E is a function of 

x, and 𝑊 = 0.5(𝜀11𝜎11 + 𝜀22𝜎22 + 𝛾12𝜎12). Based on the constitutive law for plane strain, we can 

derive the equation of  
𝑑𝑊

𝑑𝐸(𝑥)
 using the chain rule: 
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where 𝜉 and 𝜂 are orthogonal axes of the standard quadrilateral element, 𝑞1 = 𝑁𝑚𝑄𝑚, N is the shape 

function of each element, and Q is the scalar value 1 or 0. Finally, we use equation (3) to calculate 

stress intensity factor 𝐾I.  

                                                           𝐾I = √𝐽∙𝐸tip

1−𝜐2                                                                     (3) 



Wallis et al.    ESI 

6 of 11 

 

While the conventional J-integral is expected to be path-dependent, previous works [10-11] have 

demonstrated that under very specific conditions (e.g., for very small contours within refined mesh 

close to the crack tip), the modified and conventional J-integral can give the same results.  A 

comparison between the modified and conventional J-integrals is presented in Fig. S5E for graded 

material and in Fig. S5F for inverse graded material. The values of the modified and conventional J 

integral close to the crack tip for both materials are equal. Modified J integral values are independent 

of contours of elements. One element contour includes ring elements around the crack tip, presented in 

Fig. S5D. As expected, the conventional J-integral begins to give different results for larger contours. 

A close-up plot of the normal stress distribution along the thickness of the strip of material is 

presented in Fig. S5G. Normalized stress intensity factors of heterogenous materials 𝐾I,ℎ𝑒𝑡
∗  were 

calculated on the basis of equation (4), where 𝐾I,ℎ𝑜𝑚 is the non-normalized stress intensity factor of 

the homogeneous material and 𝐾I,ℎ𝑒𝑡 that of the heterogeneous material. 

                                                           𝐾I,ℎ𝑒𝑡
∗ =

𝐾I,ℎ𝑜𝑚−𝐾I,ℎ𝑒𝑡

𝐾I,ℎ𝑜𝑚
                                                      (4) 
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Figure S1. Macrophotograph of Pinctada margeritifera. Scale bar: 4 cm. 

 

 

Figure S2. Axes of 2–10° lattice rotations within Group 1, transitional, and Group 2 

prisms.  

Plots are presented in both the crystal (top) and sample (bottom, lower-hemisphere) reference frames. 

In all groups, rotation axes are approximately perpendicular to the [c]-axis and exhibit some bias 

towards <a>-axes in Group 1, consistent with dispersions of crystal axes in pole figures in Figure 2. 

Rotation axes in Group 1 prisms are predominantly oblique to both the growth direction and the plane 

of the shell, whereas those in Group 2 prisms are predominantly parallel to the growth direction. 

Contours are multiples of uniform distribution (M.U.D.). 
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Figure S3. Anisotropy in Young’s modulus 

Stereoplots of Young’s modulus for different portions of the prismatic layer, calculated from the Hill 

average of the Voigt and Reuss bounds on the elastic stiffness tensor[54,86]. Distances correspond to the 

Y-axis in Figure 1. All distributions are highly anisotropic. In the outer 100 µm of the prismatic layer, 

the maximum Young’s modulus is oriented approximately 60° oblique to the surface normal of the 

shell, yielding a Young’s modulus of ~80 GPa perpendicular to the shell surface. In the remainder of 

the prismatic layer, the maximum Young’s modulus aligns with and remains parallel with the surface 

normal of the shell, yielding a Young’s modulus of ~95 GPa. 
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Figure S4. Nanoindentation analysis of compliant and stiff prisms of P. margaritifera. 

(A) Load-displacement curve recorded from a test on a compliant prism close to the shell 

exterior; no pop-ins are visible. (B) AFM image of the indent corresponding to the load-

displacement curve in A; no cracks are visible. (C) Load-displacement curve recorded from a 

test on a stiff prism close to the shell interior; pop-ins are clearly visible. (D) AFM image of 

the indent corresponding to the load-displacement curve in C. Multiple cracks are present at 

the edges of the indent and surface debris is present due to cracking. (E) Probability of crack 

initiation as a function of load for stiff and compliant prisms measured using nanoindentation. 
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Figure S5.  Details on the finite-element modelling.   

(A, B) FEM model description. Original locus of the material strip and crack tip subjected to 

uniaxial stress conditions imposing a Mode I loading condition at the pre-existing crack. 

(C) Young’s modulus distributions considered in the model: graded, inverse graded, layered, 

and homogeneous distributions. (D) Mesh details with loading and boundary conditions 

(example shown with a crack size a = 1 µm). (E) Comparison of conventional integral 

calculation on J-integral values (blue) and “modified” J-integral calculation for graded 

materials (orange), coupled with the domain integral prediction from ABAQUS. (F) 

Comparison of domain integral calculation on J-integral values (blue) and modified J-integral 

calculation for inverse graded materials (orange), coupled with the domain integral prediction 

from ABAQUS. (G) Normalized opening stress distribution close to crack tip for three 

different sizes of crack model. (H) Mesh convergence study on model with crack size 

a=50 µm. 
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Figure S6. The prismatic layer of Pinna nobilis 

(A) Reflected light micrograph of a transverse section exhibiting tessellating polygonal prisms. (B) 

Electron backscatter diffraction map of a longitudinal section colour-coded by the inverse pole figure 

for the crystal direction aligned with the X-axis. No orientation gradients within prisms or 

systematically across the layer are evident. (C) Pole figures of the c[0001] and a<11-20> axes of the 

prisms in B. [0001] axes are aligned parallel to the growth direction and <11-20> axes are parallel to 

the plane of the shell. 

 

 

 

Figure S7. Small and very-small angle neutron scattering on powdered prisms extracted 

from both nacroprismatic bivalves. 

The experimental data is given by full circles. The prisms of both bivalves, P. margaritifera and 

P. nobilis are both characterized as a mass fractal with a Porod exponent of 3. A red dotted line gives a 

Q-3 as a visual guide. Full colored lines give the respective fit based on a multi-level Beaucage form 

factor model. The calcite prisms of P. nobilis are composed of three different units characterized by a 

radius of gyration of 275 ± 7 nm, 22.5 ± 0.5 nm, and 0.7± 0.01 nm, respectively. In the case of 

P. margaritifera, again, three structural units are found, with similar characteristic gyration radii of 

435 ± 10 nm, 20.4 ± 1 nm, and 1.11 ± 0.03 nm. 

 


