Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary information for:

Investigation of the interactions between organophosphorous agents and TiO_2 modified microcantilevers for molecule detection in air

Urelle Biapo,^{a*} Denis Spitzer,^b Valérie Keller,^a Philippe Bazin^c and Thomas Cottineau^{a*}

XPS

Figure S1: XPS analysis of (100), (001) and (110) rutile monocristals modified with Fluorine molecules : (a) F 1s (b) C 1s, (c) O 1s and (a) Ti 2p peaks.

		Attribution	Position	FWHM	R.S.F.	At conc.						
			(eV)	(eV)		%						
Rutile (001) CF ₃												
C 1s	А	C-C	284.9	1.81	1.00	22.3	32.0					
	В	C -0	286.2	1.81	1.00	5.9						
	С	C =O	288.6	2.50	1.00	3.8		F/Ti				
F 1s		C- F	688.5	2.01	4.43	1.4	1.4	0.11				
O 1s	А	Ti- O	530.0	1.60	2.93	42.6	53.0					
	В	- 0 H	531.9	1.60	2.93	7.3		O _{surf} /O _{bulk}				
	С	-H ₂ O	533.4	1.60	2.93	3.1		0.24				
Ti 2p _{3/2}		Ti -0	458.7	1.28	5.22	13.6	13.6					
Rutile (100) CF ₃												
C 1s	А	C-C	284.9	1.71	1.00	29.9	39.3					
	В	C -0	286.3	1.71	1.00	5.6						
	С	C =0	288.5	2.71	1.00	3.8		F/Ti				
F 1s		C- F	688.6	1.67	4.43	0.2	0.2	0.02				
O 1s	А	Ti- O	529.9	1.55	2.93	26.7	49.5					
	В	- 0 H	531.9	2.00	2.93	14.8		O _{surf} /O _{bulk}				
	С	-H ₂ O	533.0	2.00	2.93	8.0		0.85				
Ti 2p _{3/2}		Ti -0	458.6	1.27	5.22	10.7	10.7					
Rutile	(110)) CF₃										
C 1s	А	C-C	284.9	1.83	1.00	15.7	20.0					
	В	C -0	286.4	1.83	1.00	2.3						
	С	C =0	288.6	1.98	1.00	1.7						
	D	C-F	292.7	0.93	1.00	0.3		F/Ti				
F 1s		C- F	688.3	1.97	4.43	1.8	1.8	0.09				
O 1s	А	Ti- O	529.7	1.41	2.93	45.6	57.8					
	В	- O H	531.1	2.00	2.93	9.4		O _{surf} /O _{bulk}				
	С	-H ₂ O	532.7	2.00	2.93	2.9		0.27				
Ti 2p _{3/2}		Ti -0	458.4	1.27	5.22	20.4	20.4					

Table S1: XPS deconvolution parameters for the (100), (001) and (110) rutile monocristals modified with

 Fluorine molecules.

DMMP detection curves

The μ cantilever frequency shift associated to DMMP adsorbtion and desorption du DMMP were fitted by a biexponential decay fonctions.

$$\Delta f_{ads} = \Delta f_0 + A_1 e^{-\frac{x - x_0}{t_1}} + A_2 e^{-\frac{x - x_0}{t_2}}$$

Single exponential function cannot reproduce correctly the curves. This suggests that two different phenomena govern the absorption kinetics. (A_1, t_1) and (A_2, t_2) are the constant associated to these phenomena and our hypothesis is that the fast transition is associated with physical adsorption/desorption at the film surface while the slower one is related to chemical interaction with the surface and diffusion in the porosity of the TiO₂-NRs films. All fitting were done with Origin program. Figure S2 gives an example of data fitting for the pristine TiO₂ nanorods. The constants ectracted for the different samples are gathered in table S2.

Figure S2: Example of fitting of the frequencies shift curves during the DMMP absorption / desorption on the microcantilever.

 Table S2: Fit parameters of the frequency shifts during DMMP absorption/desorption for the µcantilevers

 modified with different molecules.

				Desorption				
	Δ_{f10min}	A ₁	t ₁	A ₂	t ₂	$A_1 + A_2$	t ₁	t ₂
	(Hz)	(Hz)	(s)	(Hz)	(s)	(Hz)	(s)	(s)
TiO₂	-210.0	183.0	27.3	27.8	103.1	210.8	37.2	419.0
Fluorine	-312.0	216.0	26.4	98.0	30.8	314.0	25.7	118.9
Oxime	-372.0	238.3	19.6	151.8	235.5	390.1	32.6	352.7
Amine	-604.0	260.6	36.8	386.8	238.3	647.4	73.9	499.8

In situ TDP followed by IR measurements.

Figure S3: IR patterns of TiO_2 —oxime recorded during the thermal programmed desorption between 20 and $300^{\circ}C$.

Figure S4: IR patterns of TiO_2 -fluorine recorded during the thermal programmed desorption between 20 and 300°C.

Role of water and interfering molecules

Figure S5: Evolution of IR signal measured by ATR on a SI surface nanostructured with TiO₂ NRs exposed in ambient air after exposition of concentrated DMMP vapour. At t=0 min, the sample is removed from the DMMP atmosphere IR spectra are recorded after 0, 5 and 10 min of air exposition.

Figure S6: Response of a nanostructured µcantilever and a µcantilever nanostructured and functionnalized with amino terminated molecules when exposed to 50 mL.min⁻¹ flow of air with DMMP, acetone or ethanol. Note that the concentrations of ethanol and acetone in air are order of magnitude higher than the one of DMMP.