Aggregationinduceddelayedgreenfluorescencefromassemblyofgoldnanoclusters:Anadvancedprobefor"background free"pyrophosphaterecognition

Santanu Dolai, ^a Srestha Basu ^{a*} and Anumita Paul^{a*}

Electronic Supplementary Information

Fig. S1. (A) UV- vis absorbance spectra of Au NCs. (B) Transmission electron microscopic (TEM) images of Au NCs. (C) Luminescence emission spectrum of Au NCs upon excitation at 300 nm (without delay).

Fig. S2. (A) STEM image of Zn Au NCs superimposed by the elemental mapping (B) of that of Zn, (C) of that of Au and (D) of that of S in a sample of Zn Au NCs.

Fig. S3. Delayed luminescence emission spectrum of Zn Au NCs.

Table S1. Time resolved *delayed* fluorescence decay parameters of Zn Au NCs.

Sample	A_1	$\tau_1(\mu s)$	A_2	τ2 (μs)
Zn Au NCs	0.909	9.8557	0.091	95.7553
$Zn Au NCs + P_4O_7^{2-}$	1.0	9.336		

Table S2.	Time resolved	photoluminescence	(TRPL) decay	parameters of Zn Au NCs
-----------	---------------	-------------------	--------------	-------------------------

Sample	A_1	τ_1 (ns)	A_2	τ ₂ (ns)	A 3	τ3 (ns)
Zn Au NCs	0.33	5.823	0.25	0.913	0.42	19.53
$Zn Au NCs + P_4O_7^2$	0.53	13.53	0.32	4.12	0.15	38.43

Fig. S4: Bar diagram showing size distribution of Zn Au NCs

Fig. S5. FTIR spectra of Zn Au NCs (red) and that of Zn Au NCs upon treatment with sodium pyrophosphate (black).

Table S3. FTIR spectra peak assignments of Zn Au NCs and Zn Au NCs upon addition of pyrophosphate.

Zn Au NCs			$Zn Au NCs + P_2O_7^{2-}$		
Peak (cm ⁻¹)	Assignment	Reference	Peak (cm ⁻¹)	Assignment	Reference
555	υs(PO₃)	A Simple Synthesis, Characterization, Kinetics and Thermodynamics of Zinc Ammonium Phosphate, ZnNH ₄ PO ₄			Visible Light Excitation – Induced Luminescence from Gold Nanoclusters Following Surface Lgand Complexation with Zn2+ for Daylight Sensing and Cellular Imaging
600	υas(PO₃)	<u>Rattanai Baitahe</u> & Banjong Boonchom			Chirantan Gayen, Srestha Basu, Upashi Goswami and Anumita Paul
744	ဎၭ(POP)	International Journal of Thermophysics			Langmuir
904	υ _{as} (POP)	2020			2019
1037, 1194	υ s(PO 3)	41			35(27)
1390	∪s(COO⁻)	Article number: 33	1390, 1410	U _s (COO ⁻)	9037-9043
1542	ບas(COO⁻)		1542, 1575	ບas(COO⁻)	

Fig S6. (**A**): Delayed fluorescence emission spectrum of (a) Zn Au NCs and that following addition of (b) 20 μ L, (b) 30 μ L and (c) 40 μ L of sodium pyrophosphate (100mM). (**B**) Delayed fluorescence emission spectrum of (a) Zn Au NCs and that following addition of (b) 20 μ L, (b) 30 μ L and (c) 40 μ L of di-sodium hydrogen phosphate (100mM). (**C**) Delayed fluorescence emission spectrum of (a) Zn Au NCs and that following addition of (b) 20 μ L, (b) 30 μ L and (c) 40 μ L of di-sodium hydrogen phosphate (100mM). (**C**) Delayed fluorescence emission spectrum of (a) Zn Au NCs and that following addition of (b) 20 μ L, (b) 30 μ L and (c) 40 μ L of tetra butylammonium hexafluoro phosphate (100mM).

Fig. S7: Delayed emission spectrum of (a) Zn Au NCs and that following addition of (b) 20 μ L of tetrabutylammonium hexafluorophosphate and 20 μ L disodium hydrogen phosphate, (c) 40 μ L of tetrabutylammonium hexafluorophosphate and 40 μ L disodium hydrogen phosphate, (d) 20 μ L of sodium pyrophosphate and (e) 40 μ L of sodium pyrophosphate to the aqueous dispersion of Zn Au NCs previously added with (b) and (c).

Fig. S8. Normal luminescence spectrum of (A) Zn Au NCs upon addition of indicated amount of pyrophosphate ion and of (B) (a) Zn Au NCs & of following addition of (b) 20 μ L (c) 30 μ L (d) 40 μ L (e) 50 μ L (f) 60 μ L of 100 mM of sodium nitrate. The excitation wavelength was set at 300 nm. (C) Corresponding Stern Volmer plot.

Fig. S9: Plot of "extent of decrease in delayed luminescence intensity" of Zn Au NCs as function of concentration of pyrophosphate in human blood serum.

Fig. S10 (**A**): (a) Delayed fluorescence emission spectrum of Zn Au NCs and that following addition of (b) a mixture of 20 μ L of sodium nitrate (100mM), 20 μ L of sodium sulphate (100mM) & 20 μ L of sodium thiosulphate (100mM). Followed by addition of (c) 15 μ L, (d) 20 μ L, (e) 25 μ L, (f) 30 μ L, (g) 35 μ L of sodium pyrophosphate solution (100mM). (**B**) Corresponding Stern-Volmer plot.

Additional tables and figures:

SL no.	Reference	Nature of Materials	Advantages	Disadvantages
1.	D. H. Lee, S. Y. Lim, J. I- Hong, <i>Angew. Chem.</i> 2004 , <i>43</i> , 4777-80	Naphthalene- pyrimidyl) amine system	 High selectivity High sensitivity 	 Based on prompt fluorescence i.e. without delay. This leads to background interference. Complicated methodology involved in fabrication of the sensor.
2.	W-H. Chen, Y. Xing, Y. Pang, Org lett. 2011, 13, 1362-1365	Binuclear zinc complex	 Ratiometric sensing Turn on sensor 	1.Basedonpromptfluorescencei.e.withoutdelay.Thisleadstobackgroundinterference.
1.	Y. Li, Z-Z. Huang, Y. Weng, H. Tan, <i>Chem</i> <i>Commun</i> , 2019 , <i>55</i> , 11450- 11453	Alginate hydrogel comprising of copper ions and carbon dots	1. High selectivity owing to interaction between copper ions and pyrophosphate ions	1. Based on prompt fluorescence i.e. without any delay. This leads to background interference.
2.	Current work	Assembly of nanoclusters	 High selectivity owing to interaction between zinc ions and pyrophosphate ions. Based on delayed fluorescence. Thus any interference from background is eliminated. Simple methodology for fabrication of sensor Long luminescence lifetime enabling elimination of interference of allied analytes Effective in biological media 	

Table S4: Comparative study of sensors for recognition of pyrophosphate

Fig. S11 (A) Delayed emission spectrum of (a) Zn Au NCs and of that following addition of (b) 15 μ L, (c) 20 μ L, (d) 25 μ L, (e) 30 μ L and (f) 35 μ L of 100 mM of sodium pyrophosphate. (B) Delayed emission spectrum of (a) Zn Au NCs and of that following addition of (b) 15 μ L, (c) 20 μ L, (d) 25 μ L, (e) 30 μ L and (f) 35 μ L of 100 mM of sodium pyrophosphate. (C) Delayed emission spectrum of (a) Zn Au NCs and of that following addition of (b) 15 μ L, (c) 20 μ L, (d) 25 μ L, (e) 30 μ L and (f) 35 μ L of 100 mM of sodium pyrophosphate. (C) Delayed emission spectrum of (a) Zn Au NCs and of that following addition of (b) 15 μ L, (c) 20 μ L, (d) 25 μ L, (e) 30 μ L and (f) 35 μ L of 100 mM of sodium pyrophosphate. *The three sets of data were collected in three different batches*. (D) Corresponding Stern Volmer plot.

Fig. S12: Schematic representation of the possible energy diagram of the aggregates of Au NCs exhibiting delayed fluorescence

Fig. S10: Schematic representation of the possible energy diagram of Au NCs prior to and following aggregation with zinc ions.

Fig. S13: Excitation dependent delayed emission spectra of Zn Au NCs

Fig. S14: Effect of photo irradiation on the luminescence intensity of (a) Zn Au NCs and (b) rhodamine 6G, over 15 min. The excitation wavelength was set at 300 nm.

Fig. S15: Luminescence spectrum of human blood serum.

Fig. S16: Calibration curve for determination of limit of detection of pyrophosphate by Zn Au NCs