Supporting information

High valence state metal-ion doped Fe-Ni layered double hydroxide for oxygen evolution electrocatalyst and asymmetric supercapacitors

Wenke Shao, Qiufan Wang,* Can Huang, Daohong Zhang*

a Key laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central University for Nationalities, Wuhan 430074, China. Email: Zhangdh27@163.com (D. Zhang)

Experimental section

Materials characterization. Electrode material properties were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge (GCD) measurements were carried out on an electrochemical workstation (Ivium, CompactState 10800).

Three-electrode electrochemical measurements. The positive or negative electrodes were fabricated by mixing with Fe-Ni₃Co₂ LDH or FeSe₂/C, super P and Polytetrafluoroethylene binder in a weight ratio of 7:2:1. Then the resultant slurries were coated onto the carbon cloth and dried at 60 °C for 12 h in a vacuum oven. In the three-electrode system, the as-prepared Fe-Ni₃Mₓ LDH or FeSe₂/C, a platinum electrode and a saturated calomel electrode (SCE) were used as the working electrode, counter electrode and reference electrode, respectively. A 3 M LiCl solution was used as an electrolyte for all electrochemical measurements. EIS was conducted on constant voltage mode by sweeping the frequency from 100 kHz to 0.01 Hz at an amplitude of 5 mV.

Preparation of all-solid-state ASC. The Fe-Ni₃Co₂ LDH and FeSe₂/C nanocomposite electrodes were coated with PVA/LiCl gel electrolyte three times and dried at 60 °C for 1 h, respectively. Two PVA/LiCl coated electrodes were placed in parallel together,
followed by coating with PVA/LiCl again to produce an all-solid-state ASC.

**Electrochemical measurements**

Electrocatalytic activities of prepared Fe-Ni$_3$M$_x$ LDH electrode were measured in a three-electrode system with a CHI 760E electrochemical workstation at room temperature in 1.0 M KOH electrolyte for OER. 2 mg as-prepared catalysts and 2 mg Super P carbon black were dispersed in 800 µL deionized water, 180 µL isopropanol and 20 µL Nafion solution via ultrasonic treatment for 1 h to obtain a homogeneous dispersion. Subsequently, 7.85 µL of the resulting ink (containing 15.7 µg catalyst) was pipetted on the surface of glassy carbon (GC, 3mm) was used as a working electrode, a graphite rod was used as the counter electrode and Hg/HgO electrode was used as the reference electrode. Linear sweep voltammetry (LSV) curves were recorded at a scan rate of 5 mV s$^{-1}$. The cyclic voltammetry (CV) measurement was carried out with scan rates being increased from 10 to 100 mV s$^{-1}$ in the potential range from 1 V to 1.1 V vs. RHE. Electrochemical impedance spectroscopy (EIS) data were recorded at an overpotential of 10 mA cm$^{-2}$ from 0.01 Hz to 100 kHz under a 5 mV amplitude. For durability testing, 1000 cycles of CV test were performed between 1.326 and 1.626 V vs. RHE with a scan rate of 100 mV s$^{-1}$, and the LSV curves were recorded before and after the CV cycles were performed. Chronopotentiometric measurements were measured at a current density of 10 mA cm$^{-2}$ for 10 h. In all measurements, the SCE reference electrode was calibrated with respect to reversible hydrogen electrode (RHE) using the equation: \( E(\text{RHE}) = E(\text{SCE}) + 0.098 + 0.0591 \text{pH} \).

**Density functional theory (DFT) calculation.** All the spin theoretical simulations in our work were carried out on the Vienna ab initio Simulation Package (VASP) with the version 5.4.1. The Generalized gradient approximation (GGA) with the Perdew-Burke-Emzerhof (PBE) functional form was employed to evaluate the electron-electron exchange and correlation interactions while the projector augmented-wave (PAW) methods were implanted to represent the core-electron (valence electron) interactions. The GGA+U calculation were performed with the on-site Coulomb repulsion U term on the Ni 3d, Co 3d, Fe 3d, the Ueff (Ueff=U-J) values are 6.2 eV, 3.32 eV, 5.3 eV, respectively. Plane-Wave basis function was set with a kinetic cut-off energy of 550
eV. The ground-state atomic geometries were optimized by relaxing the force below 0.02 eV/Å and the convergence criteria for energy was set with the value of $1.0 \times 10^{-5}$ eV/cell. A Monkhorst-Pack meshes with the size of $3 \times 3 \times 1$ were employed to sample surface Brillouin zone. Gaussian method was employed for the both electronic structures and total energy of our models and stress/force relaxations. In order to better describe the interactions between molecules, van der Waal (vdw) interactions are included describing by DFT-D3 method of Grimme.

![Fig. S1 XRD patterns of MIL-88A.](image)

**Fig. S1** XRD patterns of MIL-88A.

![Fig. S2 SEM images of Fe-Ni$_3$Co$_2$ LDH with different reaction time (a) 0.5 h, (b) 2 h, and (c) 4 h, (d) 6 h.](image)

**Fig. S2** SEM images of Fe-Ni$_3$Co$_2$ LDH with different reaction time (a) 0.5 h, (b) 2 h, and (c) 4 h, (d) 6 h.

![Fig. S3 (a) The high-TEM image and (b) the SAED pattern of Fe-Ni$_3$Co$_2$ LDH.](image)

**Fig. S3** (a) The high-TEM image and (b) the SAED pattern of Fe-Ni$_3$Co$_2$ LDH.
Fig. S4 XRD patterns of Fe-Ni$_3$Co$_x$ LDH. (x=0, 0.5, 1, 2 and 3).

Fig. S5 XRD patterns of Fe-Ni$_3$M$_x$ LDH. (M=V, Cr, Al, Mn, Mo).

Fig. S6 XPS of (a) survey spectrum, (b) Ni 2p, (c) Fe 2p in Fe-Ni LDH, Fe-Ni$_3$Co$_2$.
LDH and Fe-Ni$_6$V$_1$ LDH, and of (d) Co 2p in Fe-Ni$_3$Co$_2$ LDH, V 2p in Fe-Ni$_6$V$_1$ LDH.

The signals of elemental Ni, Fe, Co/V, and O were detected in the overall XPS spectra of Fe-Ni$_3$Co$_2$ LDH (red line in Fig. S6a) and Fe-Ni$_6$V$_1$ LDH (blue line in Fig. S6a), which match well with the elemental mapping results. In addition to two shakeup satellites, the Ni 2p spectra of pristine Fe-Ni LDH shown in Fig. S6b is composed of a pair of peaks with binding energies at 856.4 and 874.1 eV, corresponding to the Ni$^{2+}$ 2p$_{3/2}$ and Ni$^{2+}$ 2p$_{1/2}$, respectively. Compared with that of Fe-Ni LDH, the main peak for Ni$^{2+}$ 2p$_{3/2}$ in Fe-Ni$_3$Co$_2$ LDH has no shift, but it shows a negative shift of about 0.8 eV in Fe-Ni$_6$V$_1$ LDH. The Fe 2p$_{3/2}$ peak for Fe-Ni$_6$V$_1$ LDH in Fig. S6c corresponds to Fe$^{3+}$, which shows a positive shift to 712.7 eV from 711.7 eV for that in Fe-Ni LDH, indicating the chemical environment of iron ion and nickel ion was modified by doping vanadium into the laminate. In Fig. S6d, with two shakeup satellites, the XPS spectrum of Co 2p is divided into two spin-orbit doublets of Co$^{3+}$ and Co$^{2+}$. The main peaks located at 798.0 eV for Co 2p$_{1/2}$ and 782.0 eV for Co 2p$_{3/2}$ could be split into two distinct peaks of Co$^{2+}$ (assigning to the 796.9 eV peak in Co 2p$_{1/2}$ and the 781.5 eV peak in Co 2p$_{3/2}$) and Co$^{3+}$ (corresponding to the 798.3 eV peak in Co 2p$_{1/2}$ and the 783.2 eV peak in Co 2p$_{3/2}$). The high-resolution V 2p spectrum was also decomposed into V 2p$_{3/2}$ and V 2p$_{1/2}$ due to the spin-orbit splitting that separated by ~7.2 eV. Three components could be distinguished at 516.1 eV (in green), 516.8 eV (in orange) and 517.4 eV (in blue) were in good agreement with respectively V$^{3+}$, V$^{4+}$ and V$^{5+}$, respectively. These observations suggest the partial electron transfer from Ni and Fe to V in the Fe-Ni$_6$V$_1$ LDH through oxygen bridges (O$^{2-}$) between metal ions. The XPS spectroscopy of the negative electrode was employed to evaluate further information on the structure of FeSe$_2$/C in Fig. S7.

**Fig. S7** (a-c) Fe 2p, Se 3d, C 1s XPS spectra of FeSe$_2$/C.
In Fig. S7a, a couple of peaks at 707.1 and 719.9 eV were associated with Fe 2p$_{3/2}$ and Fe 2p$_{1/2}$. And others at 711.1 and 724.2 eV were ascribed to satellite (Sat.) peaks. The peak binding energy at 55.8 eV (Se 3d$_{5/2}$) and 56.8 (Se 3d$_{3/2}$) eV, respectively. The Se-O bond was observed at 59.8 eV confirming that a small amount of SeO$_2$ impurities was formed (Fig. S7b). Fig. S7c showed the C 1s spectrum, three fitting peaks located at 284.8, 286.2, and 288.8 eV were attributed to C-C, C-O and C=O bond from amorphous carbon.

**Fig. S8** Cyclic voltammograms (1-1.1 V vs. RHE) of Fe-Ni$_x$Co$_{x}$, $x$ =0 (a), $x$ =1 (b), $x$ =2 (c), and $x$ =3 (d) LDH recorded in 1 M KOH.

**Fig. S9** the corresponding bar graph of the ECSA-normalized current density.
**Fig. S10** The chronoamperometry curves of Fe-Ni LDH, Fe-Ni$_3$Co$_1$ LDH and Fe-Ni$_3$Co$_3$ LDH at the overpotential (50 mA cm$^{-2}$).

**Fig. S11** (a) TEM images of Fe-Ni$_3$Co$_2$ LDH after 12 h durability test.
Fig. S12 (a) XRD pattern, XPS of (b) Ni 2p, (c) Fe 2p, (d) Co 2p of Fe-Ni$_3$Co$_2$ LDH after 12 h durability test. (e and f) O1s of Fe-Ni$_3$Co$_2$ LDH before and after 12 h durability test.

Fig. S13 LSV curves of Fe-Ni$_3$Co$_2$ LDH before (black) and after (red) 1000 CV cycles.
Fig. S14 LSV curves of Fe-Ni$_3$Co$_2$ LDH and Fe-Ni$_3$M LDH (M = V, Mo, and Mn) LDH synthesized using the same method in 1.0 M KOH electrolyte.

Fig. S15 (a) The cyclic voltammetry (CV) curves, (b) the galvanostatic Charge-discharge (GCD) curves, (c) Nyquist plots of Fe-Ni LDH.

Fig. S16 The cyclic voltammetry (CV) curves, the galvanostatic Charge-discharge (GCD) curves and Nyquist plots of (a-c) Fe-Ni$_3$Co$_1$ LDH, (d-f) Fe-Ni$_3$Co$_2$ LDH, (g-i) Fe-Ni$_3$Co$_3$ LDH.
Fig. S17 (a) The CV curves of Fe-Ni$_3$Co$_x$ (x=0,1,2 and 3) LDH at 10 mV s$^{-1}$, (b) The GCD curves of Fe-Ni$_3$Co$_x$ (x=0,1,2 and 3) LDH at 0.1 mA, (c) Nyquist plots of Fe-Ni$_3$Co$_x$ (x=0,1,2 and 3) LDH.

The CV diagrams of Fe-Ni$_3$Co$_x$ LDH electrodes with different reactants ratios were shown in Fig. S17a within the voltage window of 0~1 V (vs. Hg/HgO) at 30 mV s$^{-1}$. It can be observed that the Fe-Ni$_3$Co$_2$ LDH electrode material has the largest area. Combined with the GCD curves (Fig. S17b) of these electrode materials when the current density is 0.1 mA, it can be concluded that the specific capacitance of Fe-Ni$_3$Co$_2$ LDH electrode material is the largest. It can prove that the tri-metal cation doping materials have better electrochemical performance than pristine bimetallic LDH, which is not only because the high valence state dopants create more active sites, but also the structure of bimetallic LDH has been tuned, producing strong synergistic effects between the doping cations and the host cations. This result is consistent with the above characterization analysis. Fig. S17c shows the Nyquist plots of the Fe-Ni$_3$Co$_x$ LDH electrodes. Compared with other electrodes, Fe-Ni$_3$Co$_2$ LDH resistance is the smallest, which may due to its uniform nano-noodles structure facilitating surface electron transport and improving the electrical conductivity of the material.
Fig. S18 The electrochemical performance of Fe-Ni$_6$M$_1$ LDH. (a) M=V, (b) M=Al, (c) M=Cr.

Fig. S19 The electrochemical performance of Fe-Ni$_3$M$_2$ LDH. (a) M=Mo, (b) M=Mn.

Fig. S20 CV curves at 30 mV/s, (b) GCD curves at 0.8 mA, and (c) Nyquist plots of ACS device under different bending angles from 0° to 180°, respectively.
### Table S1. Comparison of the percentage of Fe, Co and Ni in the materials

<table>
<thead>
<tr>
<th>Electrode Material</th>
<th>Fe / %</th>
<th>Ni / %</th>
<th>Co / %</th>
<th>V / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-Ni LDH</td>
<td>2.06</td>
<td>9.68</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Fe-Ni₃Co₂ LDH</td>
<td>3.81</td>
<td>7.92</td>
<td>3.17</td>
<td>/</td>
</tr>
<tr>
<td>Fe-Ni₆V₁ LDH</td>
<td>2.28</td>
<td>17.23</td>
<td>/</td>
<td>2.71</td>
</tr>
</tbody>
</table>

### Table S2. Comparison of OER activity of trimetallic Fe-Ni₃Coₓ LDH with state-of-the-art and some transition metal-based electrocatalysts reported in the literature.

<table>
<thead>
<tr>
<th>Electrolysts</th>
<th>Electrolyte</th>
<th>Overpotential at 10 mA cm⁻² (mV)</th>
<th>Tafel slope (mV dec⁻¹)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-Ni₃Co₂ LDH</td>
<td>1 M KOH</td>
<td>224</td>
<td>73</td>
<td>This work</td>
</tr>
<tr>
<td>Fe-Ni LDH</td>
<td>1 M KOH</td>
<td>227</td>
<td>78</td>
<td>This work</td>
</tr>
<tr>
<td>Fe-Ni₃Co₁ LDH</td>
<td>1 M KOH</td>
<td>230</td>
<td>80</td>
<td>This work</td>
</tr>
<tr>
<td>Fe-Ni₃Co₃ LDH</td>
<td>1 M KOH</td>
<td>237</td>
<td>82</td>
<td>This work</td>
</tr>
<tr>
<td>RuO₂</td>
<td>1 M KOH</td>
<td>369</td>
<td>/</td>
<td>[9]</td>
</tr>
<tr>
<td>IrO₂</td>
<td>1 M KOH</td>
<td>338</td>
<td>/</td>
<td>[9]</td>
</tr>
<tr>
<td>IrO₃</td>
<td>1M NaOH</td>
<td>320</td>
<td>/</td>
<td>[10]</td>
</tr>
<tr>
<td>Commercial 20% Ir/C</td>
<td>0.1 M KOH</td>
<td>360</td>
<td>/</td>
<td>[11]</td>
</tr>
<tr>
<td>Porous monolayer NiFe-LDH</td>
<td>1M KOH</td>
<td>230</td>
<td>47</td>
<td>[12]</td>
</tr>
<tr>
<td>NiFe-LDH monolayer</td>
<td>1M KOH</td>
<td>272</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>NiFe-LDH</td>
<td>1M KOH</td>
<td>360</td>
<td>66</td>
<td>[13]</td>
</tr>
<tr>
<td>ZnCo-UF</td>
<td>1M KOH</td>
<td>360</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Co₃O₄/2D Ti₃C₂ MXene</td>
<td>1M KOH</td>
<td>300</td>
<td>118</td>
<td>[14]</td>
</tr>
</tbody>
</table>
Reference


8. Ye, W.; Wang, K.; Yin, W.; Chai, W.; Tang, B.; Rui, Y., Rodlike FeSe$_2$–C derived from metal organic gel wrapped with reduced graphene as an anode material with excellent performance for lithium-ion batteries. *Electrochimica Acta* 2019, 323.

density of states in AgCoO$_2$ enabled an efficient electrocatalyst toward oxygen evolution reaction. *Nano Energy* **2019**, *57*, 753-760.


